Examlex

Solved

The Torsion of a Curve Defined By r(t)r ( t )

question 76

Short Answer

The torsion of a curve defined by r(t)r ( t ) is given by
τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt} \right| ^ { 2 } }
Find the torsion of the curve defined by r(t)=cos7ti+sin7tj+4tk\mathbf { r } ( t ) = \cos 7 t \mathbf { i } + \sin 7 t \mathbf { j } + 4 t \mathbf { k } .


Definitions:

Related Questions