Examlex

Solved

For the Given Function, Find the Domain and Range of Both

question 155

Multiple Choice

For the given function, find the domain and range of both f(x) and f1(x) .{ f } ^ { - 1 } ( \mathrm { x } ) .
- For the given function, find the domain and range of both f(x) and  { f } ^ { - 1 } ( \mathrm { x } ) .  -  A)   \begin{array} { l }  \mathrm { f } : \quad \text { domain: } \{ x \mid x \geq - 4 \} \\ ~~~~\text { range: } \{ \mathrm { y } \mid \mathrm { y } \geq 0 \} \\ \mathrm { f } ^ { - 1 } : \text { domain: } \{ x \mid \mathrm { x } \geq - 4 \} \\ ~~~~\text { range: } \{ \mathrm { y } \mid \mathrm { y } \geq 0 \} \end{array}  B)  f: domain:  \{ x \mid x \geq - 4 \}    ~~~~ range:  \{ y \mid y \geq 0 \}   \mathrm { f } ^ { - 1 }  : domain:  \{ \mathrm { x } \mid \mathrm { x } \geq 0 \}   ~~~~ range:  \{ y \mid y \geq - 4 \}  C)  f: domain:  \{ x \mid x \geq 0 \}    ~~~~ range:  \{ y \mid y \geq - 4 \}   \mathrm { f } ^ { - 1 }  : domain:  \{ x \mid \mathrm { x } \geq - 4 \}    ~~~~ range:  \{ y \mid y \geq 0 \}  D)  f: domain:  \{ x \mid x \geq 0 \}    ~~~~ range:  \{ y \mid y \geq - 4 \}   \mathrm { f } ^ { - 1 }  : domain:  \{ \mathrm { x } \mid \mathrm { x } \geq 0 \}    ~~~~ range:  \{ y \mid y \geq - 4 \}

Describe the factors that contribute to changes in consumer spending and saving.
Explain the concept of disposable income and how it differs from discretionary income.
Analyze the role of consumer confidence and how it influences spending decisions.
Understand the significance of technological advancements on consumer products and services.

Definitions:

LMP

Last Menstrual Period, the date of the first day of a woman's most recent menstrual cycle, used in calculating gestational age.

Pap Smear

a screening procedure for cervical cancer, involving the collection of cells from the cervix.

Epithelial Cells

Cells that line the surfaces of the body, including the skin, blood vessels, organs, and cavities, playing roles in protection, absorption, and secretion.

False-Negative

A test result that incorrectly indicates no presence of a condition, such as a disease or a specific finding, when it is actually present.

Related Questions