Examlex

Solved

Let Two Time Points t1t _ { 1 } And t2t _ { 2 }

question 13

Multiple Choice

Let two time points, t1t _ { 1 } and t2t _ { 2 } ,on a yield curve be given,and let y(t1) y \left( t _ { 1 } \right) , y(t2) y \left( t _ { 2 } \right) be the yields at these maturities.You want to draw an interpolating curve between these maturities and are considering three alternatives: -Linear (L) :
-- y(t) =y(t1) +x(tt1) y ( t ) = y \left( t _ { 1 } \right) + x \cdot \left( t - t _ { 1 } \right) --.
-Exponential (E) :
-- y(t) =y(t1) ex(tt1) y ( t ) = y \left( t _ { 1 } \right) e ^ { x \left( t - t _ { 1 } \right) } --.
-Logarithmic (G) :
-- y(t) =y(t1) [1+ln(1+x(tt1) ) ]y ( t ) = y \left( t _ { 1 } \right) \left[ 1 + \ln \left( 1 + x \cdot \left( t - t _ { 1 } \right) \right) \right] --.
Since the interpolated curves will not coincide perfectly except at the two end-points,interpolated yields will be higher under some methods versus the others.What is the rank-ordering of size of interpolated yields?


Definitions:

Related Questions