Examlex

Solved

Figuer:
CUSTOMER In Table CUSTOMER, CID Is the Primary Key (Customer ID)

question 25

Multiple Choice

Figuer:
CUSTOMER  CID  CNAME  AGE  RESID_CITY  BIRTHPLACE 10 BLACK 40 ERIE  TAMPA 20 GREEN 25 CARY  ERIE 30 JONES 30 HEMET  TAMPA 40 MARTIN 35 HEMET  TAMPA 50 SIMON 22 ERIE  ERIE 60 VERNON 60 CARY  CARY \begin{array} { | l | l | l | l | l | } \hline \text { CID } & \text { CNAME } & \text { AGE } & \text { RESID\_CITY } & \text { BIRTHPLACE } \\\hline 10 & \text { BLACK } & 40 & \text { ERIE } & \text { TAMPA } \\\hline 20 & \text { GREEN } & 25 & \text { CARY } & \text { ERIE } \\\hline 30 & \text { JONES } & 30 & \text { HEMET } & \text { TAMPA } \\\hline 40 & \text { MARTIN } & 35 & \text { HEMET } & \text { TAMPA } \\\hline 50 & \text { SIMON } & 22 & \text { ERIE } & \text { ERIE } \\\hline 60 & \text { VERNON } & 60 & \text { CARY } & \text { CARY } \\\hline\end{array} In table CUSTOMER, CID is the primary key (Customer ID) .
RENTALS  CID  MAKE  DATE_OUT  PICKUP  RETURN  RTN 10 FORD 100ct1994 CARY  CARY 110 GM 01Nov1995 TAMPA  CARY 210 FORD 01Jan1995 ERIE  ERIE 320 NISSAN 07Ju11994 TAMPA  TAMPA 430 FORD 01Jul1995 CARY  ERIE 530 GM 01Aug1995 ERIE  ERIE 640 FORD 01Aug1994 CARY  ERIE 750 GM 01Sep1995 ERIE  CARY 870 TOYOTA 02Sep1995 RENO  RENO 9\begin{array} { | l | l | l | l | l | l | } \hline \text { CID } & \text { MAKE } & \text { DATE\_OUT } & \text { PICKUP } & \text { RETURN } & \text { RTN } \\\hline 10 & \text { FORD } & 10 - 0 c t - 1994 & \text { CARY } & \text { CARY } & 1 \\\hline 10 & \text { GM } & 01 - N o v - 1995 & \text { TAMPA } & \text { CARY } & 2 \\\hline 10 & \text { FORD } & 01 - J a n - 1995 & \text { ERIE } & \text { ERIE } & 3 \\\hline 20 & \text { NISSAN } & 07 - J u 1 - 1994 & \text { TAMPA } & \text { TAMPA } & 4 \\\hline 30 & \text { FORD } & 01 - J u l - 1995 & \text { CARY } & \text { ERIE } & 5 \\\hline 30 & \text { GM } & 01 - A u g - 1995 & \text { ERIE } & \text { ERIE } & 6 \\\hline 40 & \text { FORD } & 01 - A u g - 1994 & \text { CARY } & \text { ERIE } & 7 \\\hline 50 & \text { GM } & 01 - S e p - 19 95 & \text { ERIE } & \text { CARY } & 8 \\\hline 70 & \text { TOYOTA } & 02 - S e p - 1995 & \text { RENO } & \text { RENO } & 9 \\\hline\end{array} In the table RENTALS, RTN provides the rental number (the primary key) , CID is the customer's unique id, PICKUP is the city where the car was picked up, and Return is the city where the car was returned.
RENTCOST  MAKE  COST  FORD 30 GM 40 NISSAN 30 TOYOTA 20 VOLVO 50\begin{array} { | l | l | } \hline \text { MAKE } & \text { COST } \\\hline \text { FORD } & 30 \\\hline \text { GM } & 40 \\\hline \text { NISSAN } & 30 \\\hline \text { TOYOTA } & 20 \\\hline \text { VOLVO } & 50 \\\hline\end{array} RENTCOST shows the base cost of renting a given MAKE for one day.
CITYADJ  CITY  FACTOR  CARY 1 ERIE 1.1 RENO 0.9 TAMPA 0.8\begin{array} { | l | l | } \hline \text { CITY } & \text { FACTOR } \\\hline \text { CARY } & 1 \\\hline \text { ERIE } & 1.1 \\\hline \text { RENO } & 0.9 \\\hline \text { TAMPA } & 0.8 \\\hline\end{array} If the return city of table RENTALS is the one listed in table CITYADJ, the cost of the rental is multiplied by FACTOR and by DAYS shown in table RENTLENGTH below.
RENTLENGTH  RTN  DAYS 1123324254627381\begin{array} { | l | l | } \hline \text { RTN } & \text { DAYS } \\\hline 1 & 1 \\\hline 2 & 3 \\\hline 3 & 2 \\\hline 4 & 2 \\\hline 5 & 4 \\\hline 6 & 2 \\\hline 7 & 3 \\\hline 8 & 1 \\\hline\end{array} RENTLENGTH shows the number of days for the rental number (RTN) shown in table RENTALS. In a database used in reality, this table would be merged with the RENTALS table.
-SELECT MAKE FROM RENTALS,CUSTOMER
WHERE RENTALS.CID = CUSTOMER.CID
AND RESID_CITY = 'HEMET'
GROUP BY MAKE
HAVING COUNT (DISTINCT RENTALS.CID) =
(SELECT COUNT(*) FROM CUSTOMER
WHERE RESID_CITY = 'HEMET')
The execution of this query produces the following number of rows:

Differentiate between different types of probability distributions.
Calculate cutoff values for specific percentiles in a normal distribution.
Understand and apply concepts of the exponential distribution in context.
Perform probability calculations for both sides of the mean in a normal distribution.

Definitions:

Law of Effect

Law stating that if an action is followed by a pleasurable consequence, it will tend to be repeated, and if followed by an unpleasant consequence, it will tend not to be repeated.

Thorndike

An American psychologist who developed the law of effect and is known for his work in learning theory and educational psychology.

Operant Conditioning

A type of learning where behavior is controlled by consequences, including rewards for positive actions and punishments for negative actions.

Reinforcement

A concept in behavioral psychology where a behavior becomes more likely to occur due to the consequence that follows it.

Related Questions