Examlex

Solved

(Requires Calculus)For the Simple Linear Regression Model of Chapter 4 Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i }

question 6

Essay

(Requires Calculus)For the simple linear regression model of Chapter 4, Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i } , the OLS estimator for the intercept was β^0=Yˉβ^1Xˉ\hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } , and β^1=i=1nXiYinXYi=1nXi2nXˉ2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } X _ { i } Y _ { i } - n \overline { X Y } } { \sum _ { i = 1 } ^ { n } X _ { i } ^ { 2 } - n \bar { X } ^ { 2 } } Intuitively, the OLS estimators for the regression model Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i } might be β^0=Yˉβ^1Xˉ1β^2Xˉ2,β^1=i=1nXˉ1iYinXˉ1Yˉi=1nXˉ1i2nXˉ12\hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } , \hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } \bar { X } _ { 1i } Y _ { i } - n \bar { X } _ { 1 } \bar { Y } } { \sum _ { i = 1 } ^ { n } \bar { X } _ { 1 i } ^ { 2 } - n \bar { X } _ { 1 } ^ { 2 } } and β^2=i=1nXˉ2iYinXˉ2Yˉi=1nXˉ2i2nXˉ22\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } \bar { X } _ { 2 i } Y _ { i } - n \bar { X } _ { 2 } \bar { Y } } { \sum _ { i = 1 } ^ { n } \bar { X } _ { 2 i } ^ { 2 } - n \bar { X } _ { 2 } ^ { 2 } } By minimizing the prediction mistakes of the regression model with two explanatory variables, show that this cannot be the case.


Definitions:

Economic Profit

The variance between gross receipts and all outlays, including both tangible and intangible costs.

Accounting Profit

The total revenue of a business minus the explicit costs of operating, not including opportunity costs.

Implicit Costs

The opportunity costs that are not directly paid out but represent the loss of potential income from using resources in a certain way.

Opportunity Costs

Missing out on possible advantages from other choices by opting for a particular alternative.

Related Questions