Examlex

Solved

In the Multiple Regression Model with Two Explanatory Variables
Yi Zˉ\bar { Z }

question 4

Essay

In the multiple regression model with two explanatory variables
Yi = ?0 + ?1X1i + ?2X2i + ui
the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi = Zi - Zˉ\bar { Z } ): β^0=Yˉβ^1Xˉ1β^2Xˉ2\hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } β^2=i=1nyix1ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)and the saving rate (X2i)(average investment share of GDP from 1980 to 1990)on GDP per worker (relative to the U.S.)in 1990. The various sums needed to calculate the OLS estimates are given below: i=1nYi\sum _ { i = 1 } ^ { n } Y _ { i } = 33.33; i=1nX1i\sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025; i=1nX2i\sum _ { i = 1 } ^ { n } X _ { 2 i } =17.313 i=1nyi2\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103; i=1nx1i2\sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122; i=1nx2i2\sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422 i=1nyix1i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304; i=1nyix2i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676; i=1nx1ix2i\sum _ { i = 1 } ^ { n } x _ { 1 \mathrm { i } } x _ { 2 i } = -0.0520
The heteroskedasticity-robust standard errors of the two slope coefficients are 1.99 (for population growth)and 0.23 (for the saving rate). Calculate the 95% confidence interval for both coefficients. How many standard deviations are the coefficients away from zero?


Definitions:

Equally Spaced

A term used to describe objects or elements that are distributed at uniform intervals or distances from each other, crucial for precision in design and manufacturing.

Retaining Rings

Mechanical fasteners that hold components onto a shaft or in a housing/bore when installed in a groove.

Snap Rings

Metal rings that fit into grooves on a shaft or in a bore, designed to hold components in place by exerting radial pressure.

O-Rings

Circular, elastomeric seals used to prevent the passage of liquids or gases between two surfaces.

Related Questions