Examlex

Solved

(Requires Matrix Algebra)Consider the Time and Entity Fixed Effect Model γ2\gamma _ { 2 }

question 13

Essay

(Requires Matrix Algebra)Consider the time and entity fixed effect model with a single explanatory variable
Yit = ?0 + ?1Xit + γ2\gamma _ { 2 } D2i + ... + γn\gamma _ { n } Dni + ?2B2t + ... + ?TBTt + uit,
For the case of n = 4 and T = 3, write this model in the form Y = X? + U, where, in general,
Y = (Y1Y2Yn)\left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\Y _ { n }\end{array} \right) , U = (u1u2un)\left( \begin{array} { l } u _ { 1 } \\u _ { 2 } \\u _ { n }\end{array} \right) , X = 1X11Xk11X12Xk11X1nXkn\begin{array} { l l l l } 1 & X _ { 11 } \ldots & X _ { k 1 } \\1 & X _ { 12 } \ldots & X _ { k 1 } \\1 & X _ { 1 n } \ldots & X _ { k n }\end{array} = (x1x2xn)\left(\begin{array} { l } x _ { 1 } ^ { \prime } \\x _ { 2 } ^ { \prime } \\x _ { n } ^ { \prime }\end{array}\right) , and ? = β0β1βk\begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\beta _ { k }\end{array} How would the X matrix change if you added two binary variables, D1 and B1? Demonstrate that in this case the columns of the X matrix are not independent. Finally show that elimination of one of the two variables is not sufficient to get rid of the multicollinearity problem. In terms of the OLS estimator, β^\hat \beta = ( XX ^ { \prime } X)-1
XX ^ { \prime } Y, why does perfect multicollinearity create a problem?


Definitions:

Related Questions