Examlex

Solved

(Requires Appendix Material)If the Gauss-Markov Conditions Hold, Then OLS Is β~1=i=1naiYi\widetilde { \beta } _ { 1 } = \sum _ { i = 1 } ^ { n } a _ { i } Y _ { i }

question 41

Essay

(Requires Appendix material)If the Gauss-Markov conditions hold, then OLS is BLUE. In addition, assume here that X is nonrandom. Your textbook proves the Gauss-Markov theorem by using the simple regression model Yi = β0 + β1Xi + ui and assuming a linear estimator β~1=i=1naiYi\widetilde { \beta } _ { 1 } = \sum _ { i = 1 } ^ { n } a _ { i } Y _ { i } Substitution of the simple regression model into this expression then results in two conditions for the unbiasedness of the estimator: i=1nai\sum _ { i = 1 } ^ { n } a _ { i } = 0 and i=1naiXi\sum _ { i = 1 } ^ { n } a _ { i } X _ { i } = 1.
The variance of the estimator is var( β~1\tilde { \beta } _ { 1 }
| X1,…, Xn)= σu2\sigma _ { u } ^ { 2 } i=1nai2\sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } Different from your textbook, use the Lagrangian method to minimize the variance subject to the two constraints. Show that the resulting weights correspond to the OLS weights.


Definitions:

Related Questions