Examlex

Solved

Instruction 12  Regression statistics \text { Regression statistics }  ANOVA \text { ANOVA }

question 128

True/False

Instruction 12.22
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:
 Regression statistics \text { Regression statistics }
 MultipleR 0.9447 R Square 0.8924 Adjusted R  Square 0.8886 Standard Error 0.3342 Observations 30\begin{array}{|l|l|}\hline\text { MultipleR } & 0.9447 \\\hline \text { R Square } & 0.8924 \\\hline \begin{array}{l}\text { Adjusted R } \\\text { Square }\end{array} & 0.8886 \\\hline \text { Standard Error } & 0.3342 \\\hline \text { Observations } & 30 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfS5MSF Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072\begin{array}{|l|l|l|l|l|l|}\hline & d f & S 5 & M S & F & \begin{array}{l}\text { Significance } \\F\end{array} \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15 \\\hline \text { Residual } & 28 & 3.1282 & 0.1117 & & \\\hline \text { Total } & 29 & 29.072 & & & \\\hline\end{array}

 Coefficients  Standard  Error  tStat  p-value  Lower 95%  Upper 95%  Intercept 0.40240.12363.25590.00300.14920.6555 Applications  Recorded 0.01260.000815.23884.3946E150.01090.0143\begin{array}{|l|l|l|l|l|l|l|}\hline & \text { Coefficients } & \begin{array}{l}\text { Standard } \\\text { Error }\end{array} & \text { tStat } & \text { p-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline \begin{array}{l}\text { Applications } \\\text { Recorded }\end{array} & 0.0126 & 0.0008 & 15.2388 & \begin{array}{l}4.3946 \mathrm{E}- \\15\end{array} & 0.0109 & 0.0143 \\\hline\end{array}


Note: 4.3946E-15 is 4.3946 × 10-15.  Instruction 12.22 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:   \text { Regression statistics }   \begin{array}{|l|l|} \hline\text { MultipleR } & 0.9447 \\ \hline \text { R Square } & 0.8924 \\ \hline \begin{array}{l} \text { Adjusted R } \\ \text { Square } \end{array} & 0.8886 \\ \hline \text { Standard Error } & 0.3342 \\ \hline \text { Observations } & 30 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|l|l|l|l|l|l|} \hline & d f & S 5 & M S & F & \begin{array}{l} \text { Significance } \\ F \end{array} \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15 \\ \hline \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \hline \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}    \begin{array}{|l|l|l|l|l|l|l|} \hline & \text { Coefficients } & \begin{array}{l} \text { Standard } \\ \text { Error } \end{array} & \text { tStat } & \text { p-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \begin{array}{l} \text { Applications } \\ \text { Recorded } \end{array} & 0.0126 & 0.0008 & 15.2388 & \begin{array}{l} 4.3946 \mathrm{E}- \\ 15 \end{array} & 0.0109 & 0.0143 \\ \hline \end{array}     Note: 4.3946E-15 is 4.3946 × 10<sup>-</sup><sup>15</sup>.     -Referring to Instruction 12.22,the model appears to be adequate based on the residual analyses.  Instruction 12.22 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:   \text { Regression statistics }   \begin{array}{|l|l|} \hline\text { MultipleR } & 0.9447 \\ \hline \text { R Square } & 0.8924 \\ \hline \begin{array}{l} \text { Adjusted R } \\ \text { Square } \end{array} & 0.8886 \\ \hline \text { Standard Error } & 0.3342 \\ \hline \text { Observations } & 30 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{|l|l|l|l|l|l|} \hline & d f & S 5 & M S & F & \begin{array}{l} \text { Significance } \\ F \end{array} \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15 \\ \hline \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \hline \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}    \begin{array}{|l|l|l|l|l|l|l|} \hline & \text { Coefficients } & \begin{array}{l} \text { Standard } \\ \text { Error } \end{array} & \text { tStat } & \text { p-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \begin{array}{l} \text { Applications } \\ \text { Recorded } \end{array} & 0.0126 & 0.0008 & 15.2388 & \begin{array}{l} 4.3946 \mathrm{E}- \\ 15 \end{array} & 0.0109 & 0.0143 \\ \hline \end{array}     Note: 4.3946E-15 is 4.3946 × 10<sup>-</sup><sup>15</sup>.     -Referring to Instruction 12.22,the model appears to be adequate based on the residual analyses.
-Referring to Instruction 12.22,the model appears to be adequate based on the residual analyses.


Definitions:

SUTA Tax Rate

The state unemployment tax rate, which employers must pay to fund the state's unemployment insurance program.

Unemployment Taxes

Taxes paid by employers to fund unemployment insurance programs, varying by state and based on the amount of wages paid to employees.

Federal Income Taxes

Taxes levied by the federal government on the annual earnings of individuals, corporations, trusts, and other legal entities.

Withholding Allowances

Amounts exempted from an employee's income tax withholding, directly related to the number of dependents and personal situations.

Related Questions