Examlex

Solved

The Stability of Fe with Respect to Alpha,β+,and β-

question 3

Multiple Choice

The stability of The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Fe with respect to alpha,β+,and β- decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known: The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. He: 4.002603 u The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Cr: 51.944768 u The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Mn: 55.938907 u The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Fe: 55.934939 u The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Co: 55.939841 u The The stability of   Fe with respect to alpha,β<sup>+</sup>,and β<sup>-</sup><sup> </sup>decay is to be determined.Do not consider the possibility of decay by electron capture.The following atomic masses are known:   He: 4.002603 u   Cr: 51.944768 u   Mn: 55.938907 u   Fe: 55.934939 u   Co: 55.939841 u The   Fe nuclide is A)  not subject to alpha, β<sup>+</sup>, or β<sup>-</sup> decay. B)  subject to alpha decay only. C)  subject to β<sup>+</sup>decay only. D)  subject to β<sup>-</sup> decay only. E)  subject to β<sup>+ </sup>or β<sup>- </sup>decay, but not to alpha decay. Fe nuclide is


Definitions:

Binomial Distribution

A probability distribution that summarizes the likelihood that a variable will take one of two independent values under a given set of parameters or conditions.

Independent Trials

Independent Trials are experiments or processes in which the outcome of any given trial does not affect the outcome of any other trial.

Poisson Distribution

A probability distribution that measures the probability of a given number of events happening in a fixed interval of time or space.

Related Questions