Examlex

Solved

Instruction 13-16
Given Below Are Results from the Regression Analysis

question 147

True/False

Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } \\\text { Observations } & 40 \\\hline\end{array} ANOVA
 df  SS  MS F Significance F  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 3922325.9\begin{array}{lrrrrr}& \text { df } &{\text { SS }} & \text { MS } & F&\text { Significance F } \\\hline \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 \\\text { Residual } & 33 & 11277.2586 & 341.7351 & & \\\text { Total } & 39 & 22325.9 & &\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{lrrrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & -14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & -1.3537 & 1.1766 & -1.1504 & 0.2582 & -3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & -0.5914 & 1.8257 \\\text { Married } & -5.2189 & 7.6068 & -0.6861 & 0.4974 & -20.6950 & 10.2571 \\\text { Head } & -14.2978 & 7.6479 & -1.8695 & 0.0704 & -29.8575 & 1.2618 \\\text { Manager } & -24.8203 & 11.6932 & -2.1226 & 0.0414 & -48.6102 & -1.0303\end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
 Regression Statistics  Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square  Standard Error 18.8929 Observations 40\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.6391 \\\text { R Square } & 0.4085 \\\text { Adjusted R } & 0.3765 \\\text { Square } & \\\text { Standard Error } & 18.8929 \\\text { Observations } & 40\\\hline\end{array}  ANOVA dfSSMSF Significance F Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coefficients  Standard Error t Stat P-value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array}{l}\text { ANOVA }\\\begin{array} { l r r r l r } \hline & d f & { S S } & { M S } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\\text { Residual } & 37 & 13206.8103 & 356.9408 & & \\\text { Total } & 39 & 22325.9 & & & \\\hline\end{array}\\\begin{array} { l r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & P \text {-value } \\\hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\\text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\\text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\\hline\end{array}\end{array}
-Referring to Instruction 13-16 Model 1,you can conclude that,holding constant the effect of the other independent variables,there is a difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is married and one who is not at a 5% level of significance if you use only the information of the 95% confidence interval estimate for ?4.


Definitions:

Rule

A prescribed guide for conduct or action; within computing, it typically refers to a specific condition or criterion used in algorithms or to define operational behaviors.

Specified Folder

A designated directory in a computer's file system where specific files are stored or organized.

Categorized

Organized into groups according to shared qualities or characteristics, making it easier to find, access, or understand.

Signature

A person's name written in a distinctive way as a form of identification in authorizing documents or as a mark of consent.

Related Questions