Examlex

Solved

Instruction 13-9
a Weight-Loss Clinic Wants to Use Regression Analysis

question 43

Multiple Choice

Instruction 13-9
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in kilograms) .Two variables thought to effect weight-loss are client's length of time on the weight loss program and time of session.These variables are described below:
Y = Weight-loss (in kilograms)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session,0 if not
X3 = 1 if afternoon session,0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 + ε
Partial output from Microsoft Excel follows:
Regression Statistics
 Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array} { l l } \text { Multiple R } & 0.73514 \\ \text { R Square } & 0.540438 \\ \text { Adjusted R Square } & 0.157469 \\ \text { Standard Error } & 12.4147 \\ \text { Observations } & 12 \end{array}
ANOVA
F=5.41118 Significance F=0.040201 Intercept  Coeff  StdError t Stat P-value  Length (X1) 0.08974414.1270.00600.9951 Morn Ses (X2) 6.225382.434732.549560.0479 Aft Ses (X3) 2.21727222.14160.1001410.9235 Length*Morn Ses 11.82333.15453.5589010.0165 Length*Aft Ses 0.770583.5620.2163340.83590.541473.359880.1611580.8773\begin{array} { c c c c c } F = 5.41118 & \text { Significance } F = 0.040201 & & \\ & & & & \\ \text { Intercept } & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\ \text { Length } \left( X _ { 1 } \right) & 0.089744 & 14.127 & 0.0060 & 0.9951 \\ \text { Morn Ses } \left( X _ { 2 } \right) & 6.22538 & 2.43473 & 2.54956 & 0.0479 \\ \text { Aft Ses } \left( X _ { 3 } \right) & 2.217272 & 22.1416 & 0.100141 & 0.9235 \\ \text { Length*Morn Ses } & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\ \text { Length*Aft Ses } & 0.77058 & 3.562 & 0.216334 & 0.8359 \\ & - 0.54147 & 3.35988 & - 0.161158 & 0.8773 \end{array}
-Referring to Instruction 13-9,in terms of the ?'s in the model,give the mean change in weight-loss (Y) for every 1 month increase in time in the program (X1) when attending the evening session.


Definitions:

Related Questions