Examlex

Solved

Instruction 13-16
Given Below Are Results from the Regression Analysis

question 160

Short Answer

Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array} { l r } \hline{ \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } \\\text { Observations } & 40 \\\hline\end{array} ANOVA
DfSSMS SS  Significance F  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 3922325.9\begin{array}{lrrrrr}& D f & S S & M S &{\text { SS }} &{\text { Significance F }} \\\text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 \\\text { Residual } & 33 & 11277.2586 & 341.7351 & & \\\text { Total } & 39 & 22325.9 & &\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{lrrrrrr} & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & -14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & -1.3537 & 1.1766 & -1.1504 & 0.2582 & -3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & -0.5914 & 1.8257 \\\text { Married } & -5.2189 & 7.6068 & -0.6861 & 0.4974 & -20.6950 & 10.2571 \\\text { Head } & -14.2978 & 7.6479 & -1.8695 & 0.0704 & -29.8575 & 1.2618 \\\text { Manager } & -24.8203 & 11.6932 & -2.1226 & 0.0414 & -48.6102 & -1.0303 \\\hline\end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
 Regression Statistics  Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square  Standard Error 18.8929 Observations 40\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.6391 \\\text { R Square } & 0.4085 \\\text { Adjusted R } & 0.3765 \\\text { Square } & \\\text { Standard Error } & 18.8929\\\text { Observations } & 40\\\hline\end{array}  ANOVA dfSSMSF Significance F Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coefficients  Standard Error t Stat P-value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array}{l}\text { ANOVA }\\\begin{array} { l r r r l r } \hline & d f & { S S } & { M S } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\\text { Residual } & 37 & 13206.8103 & 356.9408 & & \\\text { Total } & 39 & 22325.9 & & & \\\hline\end{array}\\\begin{array} { l r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & P \text {-value } \\\hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\\text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\\text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\\hline\end{array}\end{array}
-Referring to Instruction 13-16 Model 1,predict the number of weeks being unemployed due to a layoff for a worker who is a 30 year old,has 10 years of education,has 15 years of experience at the previous job,is married,is the head of household,and is a manager.

Master the principles of DNA sequencing and complementary base pairing.
Understand the concept of haplotypes and their role in genetic inheritance and variation.
Identify the use of mass spectrometry in proteomics.
Learn about gene function determination and genomic analysis techniques.

Definitions:

Social Network

A network of social interactions and personal relationships, or a platform on the internet that facilitates these interactions.

Emotional Benefit

The positive psychological effect or satisfaction gained by a person from a product, service, or experience.

Social Disadvantage

A condition or circumstance that places individuals or groups at a disadvantage in society, often rooted in factors like poverty, discrimination, or lack of access to resources.

Economic Disadvantage

A condition where individuals or groups have less financial resources and opportunities than others within a society.

Related Questions