Examlex

Solved

Use the Figure to Approximate the Trigonometric Values to Within cos3\cos 3

question 2

Multiple Choice

Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth. cos3\cos 3 and sin3\sin 3  Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth.  \cos 3  and  \sin 3    A)   \begin{array} { | c | c | c | }  \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & - 0.2 < \sin 3 < - 0.1 & - 0.14 \\ \hline \end{array}  B)   \begin{array} { | c | c | c | }  \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.1 < \cos 3 < 0.2 & 0.14 \\ \hline \sin 3 & - 1 < \sin 3 < - 0.9 & - 0.99 \\ \hline \end{array}  C)   \begin{array} { | c | c | c | }  \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}  D)   \begin{array} { | c | c | c | }  \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 0.2 < \cos 3 < - 0.1 & - 0.14 \\ \hline \sin 3 & 0.9 < \sin 3 < 1 & 0.99 \\ \hline \end{array}  E)   \begin{array} { | c | c | c | }  \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 1 < \cos 3 < - 0.9 & - 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}


Definitions:

Standard Error

The standard deviation of the sampling distribution of a statistic, most commonly the mean.

Test Statistic

A calculated value used in statistical hypothesis testing to determine whether to reject the null hypothesis, based on the difference between observed data and what is expected under the null hypothesis.

Alternative Hypothesis

The hypothesis that proposes a difference or effect, in contrast to the null hypothesis, which suggests no effect.

Population Distribution

The distribution of a variable across all members of a population.

Related Questions