Examlex

Solved

Let the Fourier Integral Representation of F Is f(x)=0[A(α)cos(αx)+B(α)sin(αx)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } [ A ( \alpha ) \cos ( \alpha x ) + B ( \alpha ) \sin ( \alpha x ) ] d \alpha / \pi

question 3

Multiple Choice

Let f(x) ={0 if x<11 if 1<x<10 if x>1}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < - 1 \\1 & \text { if } & - 1 < x < 1 \\0 & \text { if } & x > 1\end{array} \right\} . The Fourier integral representation of f is f(x) =0[A(α) cos(αx) +B(α) sin(αx) ]dα/πf ( x ) = \int _ { 0 } ^ { \infty } [ A ( \alpha ) \cos ( \alpha x ) + B ( \alpha ) \sin ( \alpha x ) ] d \alpha / \pi , where


Definitions:

Related Questions