Examlex

Solved

Life Expectancy an Actuary Wanted to Develop a Model to Predict

question 7

Essay

Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below. THE REGRESSION EQUATION IS y = 55.8 + 1.79x1− 0.021x2− 0.061x3  Life Expectancy  An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x<sub>1</sub>),the cholesterol level (x<sub>2</sub>),and the number of points that the individual's blood pressure exceeded the recommended value (x<sub>3</sub>).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below. THE REGRESSION EQUATION IS y = 55.8 + 1.79x<sub>1</sub>− 0.021x<sub>2</sub>− 0.061x<sub>3</sub>   ​ S = 9.47 ​ R−Sq = 22.5% ANALYSIS OF VARIANCE   ​ ​ -{Life Expectancy Narrative} Is there enough evidence at the 1% significance level to infer that the average number of hours of exercise per week and the age at death are linearly related? ​ S = 9.47 ​ R−Sq = 22.5% ANALYSIS OF VARIANCE  Life Expectancy  An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x<sub>1</sub>),the cholesterol level (x<sub>2</sub>),and the number of points that the individual's blood pressure exceeded the recommended value (x<sub>3</sub>).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below. THE REGRESSION EQUATION IS y = 55.8 + 1.79x<sub>1</sub>− 0.021x<sub>2</sub>− 0.061x<sub>3</sub>   ​ S = 9.47 ​ R−Sq = 22.5% ANALYSIS OF VARIANCE   ​ ​ -{Life Expectancy Narrative} Is there enough evidence at the 1% significance level to infer that the average number of hours of exercise per week and the age at death are linearly related? ​ ​
-{Life Expectancy Narrative} Is there enough evidence at the 1% significance level to infer that the average number of hours of exercise per week and the age at death are linearly related?


Definitions:

Related Questions