Examlex

Solved

Determine Whether the Given Series Is Convergent or Divergent n=12n2+15n3n+4\sum _ { n = 1 } ^ { \infty } \frac { 2 n ^ { 2 } + 1 } { 5 n ^ { 3 } - n + 4 }

question 199

Short Answer

Determine whether the given series is convergent or divergent. Indicate the test you use and show any necessary computation.(a) n=12n2+15n3n+4\sum _ { n = 1 } ^ { \infty } \frac { 2 n ^ { 2 } + 1 } { 5 n ^ { 3 } - n + 4 } (e) n=1tan1n\sum _ { n = 1 } ^ { \infty } \tan ^ { - 1 } n (i) n=14n2n+3n\sum _ { n = 1 } ^ { \infty } \frac { 4 ^ { n } } { 2 ^ { n } + 3 ^ { n } } (b) n=1(1+sinnn)2\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 + \sin n } { n } \right) ^ { 2 } (f) n=11n1+lnn\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n \sqrt { 1 + \ln n } } (j) n=1ln(1+1n)\sum _ { n = 1 } ^ { \infty } \ln \left( 1 + \frac { 1 } { n } \right) (c) n=1nsin(1n)\sum _ { n = 1 } ^ { \infty } n \cdot \sin \left( \frac { 1 } { n } \right) (g) n=1lnn(n+1)3\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { ( n + 1 ) ^ { 3 } } (k) n=1nen2\sum _ { n = 1 } ^ { \infty } n \cdot e ^ { - n ^ { 2 } } (d) n=1(2nn+3n3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { n \sqrt { n } } + \frac { 3 } { n ^ { 3 } } \right) (h) n=1lnnn\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { n }


Definitions:

High Brand Equity

The value a brand adds to a product or service, reflected in consumer recognition, loyalty, and willingness to pay a premium.

Recognitions

The acknowledgement or appreciation of someone's effort, achievement, or status.

Brand Revitalization

The act of reinvigorating or refreshing a brand to make it more relevant, up-to-date, and appealing to current and potential consumers, often through rebranding or modifying brand elements.

Rebuilding Trust

the process of regaining confidence and reliability in a relationship or organization after it has been damaged by breaches of trust.

Related Questions