Examlex

Solved

Exhibit 7.4 The Following Questions Are Based on the Problem Below

question 37

Essay

Exhibit 7.4
The following questions are based on the problem below.
Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below: Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. Given the solution indicated in the spreadsheet, which trucks, if any, are under an equal weight amount, and which trucks are over an equal weight amount? Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight.
The following integer goal programming formulation applies to his problem.
Y1 = weight loaded in truck 1; Y2 = weight loaded in truck 2; Y3 = weight loaded in truck 3;
Xi,j = 0 if truck i not loaded with box j; 1 if truck i loaded with box j. Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. Given the solution indicated in the spreadsheet, which trucks, if any, are under an equal weight amount, and which trucks are over an equal weight amount? Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions. Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. Given the solution indicated in the spreadsheet, which trucks, if any, are under an equal weight amount, and which trucks are over an equal weight amount?
-Refer to Exhibit 7.4. Given the solution indicated in the spreadsheet, which trucks, if any, are under an equal weight amount, and which trucks are over an equal weight amount?

Analyze trade policies' effects on wide industry ranges, emphasizing self-sufficiency and national security.
Understand the concept of offshoring and its economic impacts.
Grasp the role and effects of international agreements such as NAFTA on trade and economic relations.
Comprehend the principles of comparative advantage and how they underpin trade between individuals and nations.

Definitions:

Adult

An individual who has achieved full physical and psychological maturity.

Defence Mechanism

Psychological tactics employed subconsciously by different entities to deal with real-world scenarios and preserve their self-perception.

Regression

In psychology, a defense mechanism leading individuals to revert to a less mature state of psychological development under stress or as an analytical process involving fitting a model to data.

Immature

Characterized by a lack of complete development, whether in a biological, emotional, or psychological sense.

Related Questions