Examlex

Solved

You Have a Limited Dependent Variable (Y)and a Single Explanatory

question 41

Essay

You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows: You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. = 2.858 - 0.037 × X
(0.007)
Pr(Y = 1 You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. X)= F (15.297 - 0.236 × X)
Pr(Y = 1 You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. X)= Φ (8.900 - 0.137 × X)
(0.058)
(a)Although you cannot compare the coefficients directly,you are told that "it can be shown" that certain relationships between the coefficients of these models hold approximately.These are for the slope: You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. ≈ 0.625 × You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. , You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. ≈ 0.25 × You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close?
(b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion: You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. ≈ 0.25 × You have a limited dependent variable (Y)and a single explanatory variable (X).You estimate the relationship using the linear probability model,a probit regression,and a logit regression.The results are as follows:   = 2.858 - 0.037 × X (0.007) Pr(Y = 1   X)= F (15.297 - 0.236 × X) Pr(Y = 1   X)= Φ (8.900 - 0.137 × X) (0.058) (a)Although you cannot compare the coefficients directly,you are told that  it can be shown  that certain relationships between the coefficients of these models hold approximately.These are for the slope:   ≈ 0.625 ×   ,   ≈ 0.25 ×   .Take the logit result above as a base and calculate the slope coefficients for the linear probability model and the probit regression.Are these values close? (b)For the intercept,the same conversion holds for the logit-to-probit transformation.However,for the linear probability model,there is a different conversion:   ≈ 0.25 ×   + 0.5 Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are. + 0.5
Using the logit regression as the base,calculate a few changes in X (temperature in degrees of Fahrenheit)to see how good the approximations are.


Definitions:

Service to Customers

The act of providing support and assistance to buyers before, during, and after a purchase to ensure a satisfactory experience.

Salesperson's Success

The achievement of sales goals and objectives by a sales professional, often measured by sales volume, profitability, and customer satisfaction.

Salespeople Work

Refers to the activities and efforts of individuals who sell products or services directly to consumers or businesses, aiming to meet sales targets and customer needs.

Categories

In the context of products or information, categories represent the classification into distinct groups based on shared characteristics or criteria.

Related Questions