Examlex

Solved

Consider the Following Linear Program, Which Maximizes Profit for Two

question 86

Short Answer

Consider the following linear program, which maximizes profit for two products--regular (R) and super (S):
MAX 50R + 75S
s.t.
   1.2 R + 1.6 S ? 600 assembly (hours)
   0.8 R + 0.5 S ? 300 paint (hours)
.   16 R + 0.4 S ? 100 inspection (hours)
Sensitivity Report:
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $ B$7 Regular =291.670.00507020 $C $7 Super =133.330.00755043.75\begin{array}{ccccccc}\text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{~B} \$ 7 & \text { Regular }= & 291.67 & 0.00 & 50 & 70 & 20 \\\hline \text { \$C } \$ 7 & \text { Super }= & 133.33 & 0.00 & 75 & 50 & 43.75 \\\hline\end{array}



 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$3 Assembly (hr/unit) 563.330.0C6001$E+3036.67$E$4 Paint (hr/unit) 300.0033.3330039.29175$E$5 Inspect (hr/unit) 100.00145.8310012.9440\begin{array}{llrccc}\text { Cell } \quad \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 3 \text { Assembly (hr/unit) } & 563.33 & 0.0 \mathrm{C} & 600 & 1 \$\mathrm{E}+30 & 36.67 \\\hline \$\mathrm{E} \$ 4 \text { Paint (hr/unit) } & 300.00 & 33.33 & 300 & 39.29 & 175 \\\hline \$\mathrm{E} \$ 5 \text { Inspect (hr/unit) } & 100.00 & 145.83 & 100 & 12.94 & 40\end{array}
-The optimal number of regular products to produce is ________, and the optimal number of super products to produce is ________, for total profits of ________.


Definitions:

Apply

To formally request or seek something, such as a job, admission to an institution, or a grant.

College

An institution of higher education offering undergraduate degrees and, in some cases, master's or doctoral degrees.

Life

The condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death.

Station

A designated area or place intended for a particular use, often referring to a transportation hub or broadcasting facility.

Related Questions