Examlex

Solved

Consider the Following Linear Program, Which Maximizes Profit for Two

question 86

Short Answer

Consider the following linear program, which maximizes profit for two products--regular (R) and super (S):
MAX 50R + 75S
s.t.
   1.2 R + 1.6 S ? 600 assembly (hours)
   0.8 R + 0.5 S ? 300 paint (hours)
.   16 R + 0.4 S ? 100 inspection (hours)
Sensitivity Report:
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $ B$7 Regular =291.670.00507020 $C $7 Super =133.330.00755043.75\begin{array}{ccccccc}\text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{~B} \$ 7 & \text { Regular }= & 291.67 & 0.00 & 50 & 70 & 20 \\\hline \text { \$C } \$ 7 & \text { Super }= & 133.33 & 0.00 & 75 & 50 & 43.75 \\\hline\end{array}



 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$3 Assembly (hr/unit) 563.330.0C6001$E+3036.67$E$4 Paint (hr/unit) 300.0033.3330039.29175$E$5 Inspect (hr/unit) 100.00145.8310012.9440\begin{array}{llrccc}\text { Cell } \quad \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 3 \text { Assembly (hr/unit) } & 563.33 & 0.0 \mathrm{C} & 600 & 1 \$\mathrm{E}+30 & 36.67 \\\hline \$\mathrm{E} \$ 4 \text { Paint (hr/unit) } & 300.00 & 33.33 & 300 & 39.29 & 175 \\\hline \$\mathrm{E} \$ 5 \text { Inspect (hr/unit) } & 100.00 & 145.83 & 100 & 12.94 & 40\end{array}
-The optimal number of regular products to produce is ________, and the optimal number of super products to produce is ________, for total profits of ________.


Definitions:

Technology

The application of scientific knowledge for practical purposes, especially in industry and everyday life, including digital, mechanical, and medical advancements.

Labour Productivity

A measure of economic performance that compares the amount of goods and services produced with the number of hours worked.

Manhole Covers

Heavy, typically circular plates that cover manholes, providing access to underground utilities while preventing accidents or unauthorized entry.

Foundry

An industrial facility where metals are melted and cast into shapes by pouring the molten metal into molds.

Related Questions