Examlex

Solved

Consider the Following Linear Program, Which Maximizes Profit for Two

question 14

Short Answer

Consider the following linear program, which maximizes profit for two products--regular (R) and super (S):
MAX 50R + 75S
s.t.
   1.2 R + 1.6 S ? 600 assembly (hours)
   0.8 R + 0.5 S ? 300 paint (hours)
.   16 R + 0.4 S ? 100 inspection (hours)
Sensitivity Report:
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $ B$7 Regular =291.670.00507020 $C $7 Super =133.330.00755043.75\begin{array}{ccccccc}\text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{~B} \$ 7 & \text { Regular }= & 291.67 & 0.00 & 50 & 70 & 20 \\\hline \text { \$C } \$ 7 & \text { Super }= & 133.33 & 0.00 & 75 & 50 & 43.75 \\\hline\end{array}



 Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$3 Assembly (hr/unit) 563.330.0C6001$E+3036.67$E$4 Paint (hr/unit) 300.0033.3330039.29175$E$5 Inspect (hr/unit) 100.00145.8310012.9440\begin{array}{llrccc}\text { Cell } \quad \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 3 \text { Assembly (hr/unit) } & 563.33 & 0.0 \mathrm{C} & 600 & 1 \$\mathrm{E}+30 & 36.67 \\\hline \$\mathrm{E} \$ 4 \text { Paint (hr/unit) } & 300.00 & 33.33 & 300 & 39.29 & 175 \\\hline \$\mathrm{E} \$ 5 \text { Inspect (hr/unit) } & 100.00 & 145.83 & 100 & 12.94 & 40\end{array}
-If downtime reduced the available capacity for painting by 40 hours (from 300 to 260 hours), profits would be reduced by ________.


Definitions:

Annual Time-series

A sequence of data points representing the value of a variable over a series of years.

Sequential Order

The arrangement of objects, events, or values in a specific sequence where the order is significant.

Dependent Variable

The variable in an experiment that is observed and measured to see how it is affected by the independent variable.

Independent Variables

Elements in an experiment or schematic that are altered or sorted to examine their influence on variables that rely on them.

Related Questions