Examlex

Solved

Table 302 Table 302 Shows How Many Hairstyling Appointments a Hair Salon Can

question 110

Multiple Choice

Table 30.2  Nurrber of  stylists (per  week)   Total output  (per week)   Marginal  physical  product  (output per  stylist)   Total revenue  (dollars per  week)   Marginal revenue  product (dollars  per stylist)  0 c 16t28039d494\begin{array} { | c | c | c | c | c | } \hline \begin{array} { c } \text { Nurrber of } \\\text { stylists (per } \\\text { week) }\end{array} & \begin{array} { c } \text { Total output } \\\text { (per week) }\end{array} & \begin{array} { c } \text { Marginal } \\\text { physical } \\\text { product } \\\text { (output per } \\\text { stylist) }\end{array} & \begin{array} { c } \text { Total revenue } \\\text { (dollars per } \\\text { week) }\end{array} & \begin{array} { c } \text { Marginal revenue } \\\text { product (dollars } \\\text { per stylist) }\end{array} \\\hline 0 & \text { c } & \ldots & & \ldots \\\hline 1 & 6 t & & \\\hline 2 & 80 & & \\\hline 3 & 9 d & & \\\hline 4 & 94 & & \\\hline\end{array} Table 30.2 shows how many hairstyling appointments a hair salon can schedule per week based on the number of stylists.In the spaces provided,compute the marginal physical product (MPP) of the hair stylists,total revenue,and marginal revenue product of the stylists,assuming that a hair stylist charges $60 per appointment.In Table 30.2,suppose a hairstylist is paid $600 per week.How many hairstylists should a profit-maximizing salon hire?


Definitions:

Sample Proportion

The proportion of items in a sample that meet a specified condition, often used as an estimator of the population proportion.

Binomial Distribution

A probability distribution representing the number of successes in a fixed number of independent Bernoulli trials with the same success probability.

Probability of Success

The likelihood of achieving a desired outcome or result in an experiment or trial.

Normal Distribution

A bell-shaped data distribution where most observations cluster around the central peak and the probabilities for values further away from the mean taper off equally in both directions.

Related Questions