Examlex

Solved

A Financial Planner Wants to Design a Portfolio of Investments

question 76

Essay

A financial planner wants to design a portfolio of investments for a client. The client has $400,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 30% of the money in any one investment, at least one half should be invested in long-term bonds which mature in six or more years, and no more than 40% of the total money should be invested in B or C since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.
 Investment  Return  Years to Maturity  Rating A6.45%6 1-Excellent  B 8.5%5 3-Gaod  C 9.00%8 4-Fair  D 7.75%4 2-Very Gaod \begin{array} { c c c l } \text { Investment } & \text { Return } & \text { Years to Maturity } & \text { Rating } \\\hline \mathbf { A } & 6.45 \% & 6 & \text { 1-Excellent } \\\text { B } & 8.5 \% & 5 & \text { 3-Gaod } \\\text { C } & 9.00 \% & 8 & \text { 4-Fair } \\\text { D } & 7.75 \% & 4 & \text { 2-Very Gaod }\end{array}  Let X1= Dollars invested in AX2= Dollars invested in BX3= Dollars invested in CX4= Dollars invested in D MAX: X45X1+.085X2+990X3+.075X4 Subject to: X1+X2+X3+X4400000X1120000X2120000X3120000X4120000X1+X3200000X2+X3160000X1X2X3X40\begin{array} { l l } \text { Let } & \mathbf { X } _ { 1 } = \text { Dollars invested in } \mathrm { A } \\& \mathbf { X } _ { \mathbf { 2 } } = \text { Dollars invested in } \mathrm { B } \\& \mathbf { X } _ { \mathbf { 3 } } = \text { Dollars invested in } \mathrm { C } \\& \mathbf { X } _ { 4 } = \text { Dollars invested in } \mathrm { D } \\& \\ \text { MAX: } & \mathbf { X } 45 \mathbf { X } _ { 1 } + .085 \mathbf { X } _ { \mathbf { 2 } } + \text {. } 990 \mathbf { X } _ { \mathbf { 3 } } + .075 \mathbf { X } _ { 4 } \\\text { Subject to: } & \mathbf { X } _ { 1 } + \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { \mathbf { 3 } } + \mathbf { X } _ { 4 } \leq 400000 \\& \mathbf { X } _ { 1 } \leq 120000 \\& \mathbf { X } _ { \mathbf { 2 } } \leq 120000 \\& \mathbf { X } _ { 3 } \leq 120000 \\& \mathbf { X } _ { 4 } \leq 120000 \\& \mathbf { X } _ { 1 } + \mathbf { X } _ { 3 } \geq 200000 \\& \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { 3 } \leq 160000 \\& \mathbf { X } _ { 1 } \mathbf { X } _ { \mathbf { 2 } } \mathbf { X } _ { \mathbf { 3 } } \mathbf { X } _ { 4 } \geq 0\end{array}  A financial planner wants to design a portfolio of investments for a client. The client has $400,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 30% of the money in any one investment, at least one half should be invested in long-term bonds which mature in six or more years, and no more than 40% of the total money should be invested in B or C since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.   \begin{array} { c c c l }  \text { Investment } & \text { Return } & \text { Years to Maturity } & \text { Rating } \\ \hline \mathbf { A } & 6.45 \% & 6 & \text { 1-Excellent } \\ \text { B } & 8.5 \% & 5 & \text { 3-Gaod } \\ \text { C } & 9.00 \% & 8 & \text { 4-Fair } \\ \text { D } & 7.75 \% & 4 & \text { 2-Very Gaod } \end{array}   \begin{array} { l l }  \text { Let } & \mathbf { X } _ { 1 } = \text { Dollars invested in } \mathrm { A } \\ & \mathbf { X } _ { \mathbf { 2 } } = \text { Dollars invested in } \mathrm { B } \\ & \mathbf { X } _ { \mathbf { 3 } } = \text { Dollars invested in } \mathrm { C } \\ & \mathbf { X } _ { 4 } = \text { Dollars invested in } \mathrm { D } \\ & \\  \text { MAX: }  & \mathbf { X } 45 \mathbf { X } _ { 1 } + .085 \mathbf { X } _ { \mathbf { 2 } } + \text {. } 990 \mathbf { X } _ { \mathbf { 3 } } + .075 \mathbf { X } _ { 4 } \\ \text { Subject to: } & \mathbf { X } _ { 1 } + \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { \mathbf { 3 } } + \mathbf { X } _ { 4 } \leq 400000 \\ & \mathbf { X } _ { 1 } \leq 120000 \\ & \mathbf { X } _ { \mathbf { 2 } } \leq 120000 \\ & \mathbf { X } _ { 3 } \leq 120000 \\ & \mathbf { X } _ { 4 } \leq 120000 \\ & \mathbf { X } _ { 1 } + \mathbf { X } _ { 3 } \geq 200000 \\ & \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { 3 } \leq 160000 \\ & \mathbf { X } _ { 1 } \mathbf { X } _ { \mathbf { 2 } } \mathbf { X } _ { \mathbf { 3 } } \mathbf { X } _ { 4 } \geq 0 \end{array}      What formulas are required for the following cells in the Excel spreadsheet implementation of the formulation? B7 D7 F7 H7  A financial planner wants to design a portfolio of investments for a client. The client has $400,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 30% of the money in any one investment, at least one half should be invested in long-term bonds which mature in six or more years, and no more than 40% of the total money should be invested in B or C since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.   \begin{array} { c c c l }  \text { Investment } & \text { Return } & \text { Years to Maturity } & \text { Rating } \\ \hline \mathbf { A } & 6.45 \% & 6 & \text { 1-Excellent } \\ \text { B } & 8.5 \% & 5 & \text { 3-Gaod } \\ \text { C } & 9.00 \% & 8 & \text { 4-Fair } \\ \text { D } & 7.75 \% & 4 & \text { 2-Very Gaod } \end{array}   \begin{array} { l l }  \text { Let } & \mathbf { X } _ { 1 } = \text { Dollars invested in } \mathrm { A } \\ & \mathbf { X } _ { \mathbf { 2 } } = \text { Dollars invested in } \mathrm { B } \\ & \mathbf { X } _ { \mathbf { 3 } } = \text { Dollars invested in } \mathrm { C } \\ & \mathbf { X } _ { 4 } = \text { Dollars invested in } \mathrm { D } \\ & \\  \text { MAX: }  & \mathbf { X } 45 \mathbf { X } _ { 1 } + .085 \mathbf { X } _ { \mathbf { 2 } } + \text {. } 990 \mathbf { X } _ { \mathbf { 3 } } + .075 \mathbf { X } _ { 4 } \\ \text { Subject to: } & \mathbf { X } _ { 1 } + \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { \mathbf { 3 } } + \mathbf { X } _ { 4 } \leq 400000 \\ & \mathbf { X } _ { 1 } \leq 120000 \\ & \mathbf { X } _ { \mathbf { 2 } } \leq 120000 \\ & \mathbf { X } _ { 3 } \leq 120000 \\ & \mathbf { X } _ { 4 } \leq 120000 \\ & \mathbf { X } _ { 1 } + \mathbf { X } _ { 3 } \geq 200000 \\ & \mathbf { X } _ { \mathbf { 2 } } + \mathbf { X } _ { 3 } \leq 160000 \\ & \mathbf { X } _ { 1 } \mathbf { X } _ { \mathbf { 2 } } \mathbf { X } _ { \mathbf { 3 } } \mathbf { X } _ { 4 } \geq 0 \end{array}      What formulas are required for the following cells in the Excel spreadsheet implementation of the formulation? B7 D7 F7 H7 What formulas are required for the following cells in the Excel spreadsheet implementation of the formulation?
B7
D7
F7
H7


Definitions:

Housing

The creation and allocation of living spaces for individuals and families, considered essential for well-being and social stability.

Treatment Groups

Groups formed with the purpose of providing therapy, support, or interventions to individuals sharing common issues or conditions.

Resolve Problems

Resolving problems entails finding solutions to issues or difficulties encountered within various contexts, such as personal, professional, or societal.

Related Questions