Examlex

Solved

TABLE 14-12
a Weight-Loss Clinic Wants to Use Y=β0+β1X1+β2X2+β3X3+β4X1X2+β5X1X3+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{1} X_{2}+\beta_{5} X_{1} X_{3}+\varepsilon

question 87

Multiple Choice

TABLE 14-12
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in pounds) . Two variables thought to affect weight-loss are client's length of time on the weight loss program and time of session. These variables are described below:
Y = Weight- loss (in pounds)
X1 = Length of time in weight- loss program (in months)
X
2 = 1 if morning session, 0 if not
X3 = 1 if afternoon session, 0 if not (Base level = evening session)
Data for 12 clients on a weight- loss program at the clinic were collected and used to fit the interaction model:
Y=β0+β1X1+β2X2+β3X3+β4X1X2+β5X1X3+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{1} X_{2}+\beta_{5} X_{1} X_{3}+\varepsilon

Partial output from Microsoft Excel follows:
 Regression Statistics  Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l c } \hline \text { Multiple R } & 0.73514 \\\text { R Square } & 0.540438 \\\text { Adjusted R Square } & 0.157469 \\\text { Standard Error } & 12.4147 \\\text { Observations } & 12 \\\hline\end{array}\end{array}

ANOVA
F=5.41118 Significance F=0.040201F = 5.41118 \quad\text { Significance } F = 0.040201

Coefficients  Standard Error  t Stat  p -valueIntercept 0.08974414.1270.00600.9951Length (X1) 6.225382.434732.549560.0479Morn Ses (X2) 2.21727222.14160.1001410.9235Aft Ses (X3) 11.82333.15453.5589010.0165Length*Morn Ses0.770583.5620.2163340.8359Length * Aft Ses0.541473.359880.1611580.8773\begin{array}{lcccr}\hline & \text {Coefficients }& \text { Standard Error }& \text { t Stat }& \text { p -value} \\\hline \text {Intercept }& 0.089744 & 14.127 & 0.0060 & 0.9951 \\ \text {Length (X1) }& 6.22538 & 2.43473 & 2.54956 & 0.0479 \\ \text {Morn Ses (X2) }& 2.217272 & 22.1416 & 0.100141 & 0.9235 \\ \text {Aft Ses (X3) } & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\ \text {Length*Morn Ses} & 0.77058 & 3.562 & 0.216334 & 0.8359 \\ \text {Length * Aft Ses} & -0.54147 & 3.35988 & -0.161158 & 0.8773 \\\hline\end{array}

-Referring to Table 14-12, which of the following statements is supported by the analysis shown?


Definitions:

Reasonable Expectation Of Privacy

A reasonable expectation of privacy is a legal standard that determines in which situations a person can reasonably expect their communications or activities to be protected from government or unauthorized intrusion.

Social Media Site

A digital platform that enables users to create, share, or exchange information, ideas, pictures, and videos in virtual communities and networks.

Law Enforcement

Refers to government agencies and officers responsible for maintaining public order, preventing and detecting crime, and enforcing laws.

Phony Social Media Account

A fake account on a social media platform created for misleading or deceptive purposes.

Related Questions