Examlex

Solved

TABLE 13- 11
a Company That Has the Distribution Rights

question 134

Multiple Choice

TABLE 13- 11
A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars) to estimate the number of units (in thousands of units) that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:
 Regression Statistics  Multiple R 0.8531 R Square 0.7278 Adjusted R Square 0.7180 Standard Error 47.8668 Observations 30\begin{array} { l c } & \text { Regression Statistics } \\\hline \text { Multiple R } & 0.8531 \\\text { R Square } & 0.7278 \\\text { Adjusted R Square } & 0.7180 \\\text { Standard Error } & 47.8668 \\\text { Observations } & 30\end{array} ANOVA
 d f SS  MS Significance FRegression 1171499.78171499.7874.85052.1259E09Residual2864154.422291.23Total29235654.20\begin{array}{lrrrrr}\hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F} \\\hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\\text {Residual} & 28 & 64154.42 & 2291.23 & & \\\text {Total} & 29 & 235654.20 & & & \\\hline\end{array}

Coefficients  Standard Error t Stat  p -value Lower 95% Upper 95%  Intercept 76.535111.83186.46865.24E0752.2987100.7716Gross4.33310.50088.65162.13E093.30725.3590\begin{array}{lrrrrrr}\hline & \text {Coefficients }& \text { Standard Error}& \text { t Stat }& \text { p -value }& \text {Lower 95\% }& \text {Upper 95\% }\\\hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\ \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\\hline\end{array}
 TABLE 13- 11 A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars)  to estimate the number of units (in thousands of units)  that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:    \begin{array} { l c }  & \text { Regression Statistics } \\ \hline \text { Multiple R } & 0.8531 \\ \text { R Square } & 0.7278 \\ \text { Adjusted R Square } & 0.7180 \\ \text { Standard Error } & 47.8668 \\ \text { Observations } & 30 \end{array}  ANOVA  \begin{array}{lrrrrr} \hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F}  \\ \hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\ \text {Residual} & 28 & 64154.42 & 2291.23 & & \\ \text {Total} & 29 & 235654.20 & & & \\ \hline\end{array}    \begin{array}{lrrrrrr} \hline &  \text {Coefficients }& \text { Standard Error}& \text { t  Stat }&  \text { p -value }&  \text {Lower 95\% }& \text {Upper 95\% }\\ \hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\  \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\ \hline \end{array}       -Referring to Table 13-11, which of the following is the correct alternative hypothesis for testing whether there is a linear relationship between box office gross and home video unit sales? A)    H_{1}: \beta_{1}=0   B)    H_{1}: b_{1}=0   C)    H_{1}: \beta_{1} \neq 0   D)    H_{1}: b_{1} \neq 0
 TABLE 13- 11 A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars)  to estimate the number of units (in thousands of units)  that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:    \begin{array} { l c }  & \text { Regression Statistics } \\ \hline \text { Multiple R } & 0.8531 \\ \text { R Square } & 0.7278 \\ \text { Adjusted R Square } & 0.7180 \\ \text { Standard Error } & 47.8668 \\ \text { Observations } & 30 \end{array}  ANOVA  \begin{array}{lrrrrr} \hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F}  \\ \hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\ \text {Residual} & 28 & 64154.42 & 2291.23 & & \\ \text {Total} & 29 & 235654.20 & & & \\ \hline\end{array}    \begin{array}{lrrrrrr} \hline &  \text {Coefficients }& \text { Standard Error}& \text { t  Stat }&  \text { p -value }&  \text {Lower 95\% }& \text {Upper 95\% }\\ \hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\  \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\ \hline \end{array}       -Referring to Table 13-11, which of the following is the correct alternative hypothesis for testing whether there is a linear relationship between box office gross and home video unit sales? A)    H_{1}: \beta_{1}=0   B)    H_{1}: b_{1}=0   C)    H_{1}: \beta_{1} \neq 0   D)    H_{1}: b_{1} \neq 0

-Referring to Table 13-11, which of the following is the correct alternative hypothesis for testing whether there is a linear relationship between box office gross and home video unit sales?


Definitions:

AVC

Average Variable Cost represents the variable costs (like materials and labor) associated with producing each unit of output.

ATC

Average Total Cost, the total cost of production divided by the quantity of output produced, encompassing both fixed and variable costs.

MC

Short for Marginal Cost, it refers to the change in total cost that arises when the quantity produced is incremented by one unit.

MR

Marginal Revenue, the additional income that is gained from selling one more unit of a good or service.

Related Questions