Examlex

Solved

At a Recent Music Concert, a Survey Was Conducted That

question 164

Essay

At a recent music concert, a survey was conducted that asked a random sample of 20 people their age and how many concerts they have attended since the beginning of the year. The following data were collected.  Age 62574049675443655441 Number of concerts 6543552631\begin{array} { | l | c | c | c | c | c | c | c | c | c | c | } \hline \text { Age } & 62 & 57 & 40 & 49 & 67 & 54 & 43 & 65 & 54 & 41 \\\hline \text { Number of concerts } & 6 & 5 & 4 & 3 & 5 & 5 & 2 & 6 & 3 & 1 \\\hline\end{array}  Age 44485560596369403852 Number of Concerts 3245454213\begin{array} { | l | c | c | c | c | c | c | c | c | c | c | } \hline \text { Age } & 44 & 48 & 55 & 60 & 59 & 63 & 69 & 40 & 38 & 52 \\\hline \text { Number of Concerts } & 3 & 2 & 4 & 5 & 4 & 5 & 4 & 2 & 1 & 3 \\\hline\end{array}  SUMMARY OUTPUT  DESCRIPTIVE STATISTICS  Reqression Statiatics  Multiple R 0.80203 R Square 0.64326 Adjusted R Square 0.62344 Standard Error 0.93965 Observations 20 Age  Concerts  Mean 53 Mean 3.65 Standard Error 2.1849 Standard Error 0.3424 Standard Deviation 9.7711 Standard Deviation 1.5313 Sample Variance 95.4737 Sample Variance 2.3447 Count 20 Count 20\begin{array}{ll}\text { SUMMARY OUTPUT }&\text { DESCRIPTIVE STATISTICS }\\\begin{array}{lc}\hline {\text { Reqression Statiatics }} \\\hline \text { Multiple R } & 0.80203 \\\text { R Square } & 0.64326 \\\text { Adjusted R Square } & 0.62344 \\\text { Standard Error } & 0.93965 \\\text { Observations } & 20 \\\hline\end{array}&\begin{array}{lclc}\hline {\text { Age }} &&{\text { Concerts }} \\\hline \text { Mean } & 53 & \text { Mean } & 3.65 \\\text { Standard Error } & 2.1849 & \text { Standard Error } & 0.3424 \\\text { Standard Deviation } & 9.7711 & \text { Standard Deviation } & 1.5313 \\\text { Sample Variance } & 95.4737 & \text { Sample Variance } & 2.3447 \\\text { Count } & 20 & \text { Count } & 20\\\hline\end{array}\\\end{array}
 SPEARMAN RANK CORRELATION COEFFICIENT =0.8306\text { SPEARMAN RANK CORRELATION COEFFICIENT }=0.8306

 ANOVA  df  SS  MS F Significance F  Regression 128.6571128.6571132.456532.1082E05 Residual 1815.892890.88294 Total 1944.55\begin{array}{lccccc} \text { ANOVA }\\\hline& \text { df } & \text { SS } & \text { MS } & F & \text { Significance F } \\\hline \text { Regression } & 1 & 28.65711 & 28.65711 & 32.45653 & 2.1082 \mathrm{E}-05 \\\text { Residual } & 18 & 15.89289 & 0.88294 & & \\\text { Total } & 19 & 44.55 & & &\\\hline\end{array}

 Coefficients Standard Error  t Stat  P-value  Lower 95% Upper 95%  Intercept 3.011521.188022.534910.020745.507460.5156 Age 0.125690.022065.697060.000020.079340.1720\begin{array}{lcccccc}\hline & \text { Coefficients } & \text {Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 95 \% & \text { Upper 95\% } \\\hline \text { Intercept } & -3.01152 & 1.18802 & -2.53491 & 0.02074 & -5.50746 & -0.5156 \\\text { Age } & 0.12569 & 0.02206 & 5.69706 & 0.00002 & 0.07934 & 0.1720\end{array} a. Use the regression equation  At a recent music concert, a survey was conducted that asked a random sample of 20 people their age and how many concerts they have attended since the beginning of the year. The following data were collected.  \begin{array} { | l | c | c | c | c | c | c | c | c | c | c | }  \hline \text { Age } & 62 & 57 & 40 & 49 & 67 & 54 & 43 & 65 & 54 & 41 \\ \hline \text { Number of concerts } & 6 & 5 & 4 & 3 & 5 & 5 & 2 & 6 & 3 & 1 \\ \hline \end{array}   \begin{array} { | l | c | c | c | c | c | c | c | c | c | c | }  \hline \text { Age } & 44 & 48 & 55 & 60 & 59 & 63 & 69 & 40 & 38 & 52 \\ \hline \text { Number of Concerts } & 3 & 2 & 4 & 5 & 4 & 5 & 4 & 2 & 1 & 3 \\ \hline \end{array}   \begin{array}{ll} \text { SUMMARY OUTPUT }&\text { DESCRIPTIVE STATISTICS }\\ \begin{array}{lc} \hline {\text { Reqression Statiatics }} \\ \hline \text { Multiple R } & 0.80203 \\ \text { R Square } & 0.64326 \\ \text { Adjusted R Square } & 0.62344 \\ \text { Standard Error } & 0.93965 \\ \text { Observations } & 20 \\ \hline \end{array}&\begin{array}{lclc} \hline {\text { Age }} &&{\text { Concerts }} \\ \hline \text { Mean } & 53 & \text { Mean } & 3.65 \\ \text { Standard Error } & 2.1849 & \text { Standard Error } & 0.3424 \\ \text { Standard Deviation } & 9.7711 & \text { Standard Deviation } & 1.5313 \\ \text { Sample Variance } & 95.4737 & \text { Sample Variance } & 2.3447 \\ \text { Count } & 20 & \text { Count } & 20\\\hline \end{array}\\ \end{array}   \text { SPEARMAN RANK CORRELATION COEFFICIENT }=0.8306    \begin{array}{lccccc} \text { ANOVA }\\ \hline& \text { df } & \text { SS } & \text { MS } & F & \text { Significance F } \\ \hline \text { Regression } & 1 & 28.65711 & 28.65711 & 32.45653 & 2.1082 \mathrm{E}-05 \\ \text { Residual } & 18 & 15.89289 & 0.88294 & & \\ \text { Total } & 19 & 44.55 & & &\\\hline \end{array}    \begin{array}{lcccccc} \hline & \text { Coefficients } & \text {Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 95 \% & \text { Upper 95\% } \\ \hline \text { Intercept } & -3.01152 & 1.18802 & -2.53491 & 0.02074 & -5.50746 & -0.5156 \\ \text { Age } & 0.12569 & 0.02206 & 5.69706 & 0.00002 & 0.07934 & 0.1720 \end{array}  a. Use the regression equation  = -3.0115 + 0.1257x to determine the predicted values of y. b. Use the predicted values and the actual values of y to calculate the residuals. c. Plot the residuals against the predicted values   . d. Does it appear that heteroscedasticity is a problem? Explain. e. Draw a histogram of the residuals. f. Does it appear that the errors are normally distributed? Explain. g. Use the residuals to compute the standardised residuals. h. Identify possible outliers. = -3.0115 + 0.1257x to determine the predicted values of y.
b. Use the predicted values and the actual values of y to calculate the residuals.
c. Plot the residuals against the predicted values  At a recent music concert, a survey was conducted that asked a random sample of 20 people their age and how many concerts they have attended since the beginning of the year. The following data were collected.  \begin{array} { | l | c | c | c | c | c | c | c | c | c | c | }  \hline \text { Age } & 62 & 57 & 40 & 49 & 67 & 54 & 43 & 65 & 54 & 41 \\ \hline \text { Number of concerts } & 6 & 5 & 4 & 3 & 5 & 5 & 2 & 6 & 3 & 1 \\ \hline \end{array}   \begin{array} { | l | c | c | c | c | c | c | c | c | c | c | }  \hline \text { Age } & 44 & 48 & 55 & 60 & 59 & 63 & 69 & 40 & 38 & 52 \\ \hline \text { Number of Concerts } & 3 & 2 & 4 & 5 & 4 & 5 & 4 & 2 & 1 & 3 \\ \hline \end{array}   \begin{array}{ll} \text { SUMMARY OUTPUT }&\text { DESCRIPTIVE STATISTICS }\\ \begin{array}{lc} \hline {\text { Reqression Statiatics }} \\ \hline \text { Multiple R } & 0.80203 \\ \text { R Square } & 0.64326 \\ \text { Adjusted R Square } & 0.62344 \\ \text { Standard Error } & 0.93965 \\ \text { Observations } & 20 \\ \hline \end{array}&\begin{array}{lclc} \hline {\text { Age }} &&{\text { Concerts }} \\ \hline \text { Mean } & 53 & \text { Mean } & 3.65 \\ \text { Standard Error } & 2.1849 & \text { Standard Error } & 0.3424 \\ \text { Standard Deviation } & 9.7711 & \text { Standard Deviation } & 1.5313 \\ \text { Sample Variance } & 95.4737 & \text { Sample Variance } & 2.3447 \\ \text { Count } & 20 & \text { Count } & 20\\\hline \end{array}\\ \end{array}   \text { SPEARMAN RANK CORRELATION COEFFICIENT }=0.8306    \begin{array}{lccccc} \text { ANOVA }\\ \hline& \text { df } & \text { SS } & \text { MS } & F & \text { Significance F } \\ \hline \text { Regression } & 1 & 28.65711 & 28.65711 & 32.45653 & 2.1082 \mathrm{E}-05 \\ \text { Residual } & 18 & 15.89289 & 0.88294 & & \\ \text { Total } & 19 & 44.55 & & &\\\hline \end{array}    \begin{array}{lcccccc} \hline & \text { Coefficients } & \text {Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 95 \% & \text { Upper 95\% } \\ \hline \text { Intercept } & -3.01152 & 1.18802 & -2.53491 & 0.02074 & -5.50746 & -0.5156 \\ \text { Age } & 0.12569 & 0.02206 & 5.69706 & 0.00002 & 0.07934 & 0.1720 \end{array}  a. Use the regression equation  = -3.0115 + 0.1257x to determine the predicted values of y. b. Use the predicted values and the actual values of y to calculate the residuals. c. Plot the residuals against the predicted values   . d. Does it appear that heteroscedasticity is a problem? Explain. e. Draw a histogram of the residuals. f. Does it appear that the errors are normally distributed? Explain. g. Use the residuals to compute the standardised residuals. h. Identify possible outliers. .
d. Does it appear that heteroscedasticity is a problem? Explain.
e. Draw a histogram of the residuals.
f. Does it appear that the errors are normally distributed? Explain.
g. Use the residuals to compute the standardised residuals.
h. Identify possible outliers.


Definitions:

ENS

The Enteric Nervous System (ENS) is a network of neurons lining the gastrointestinal tract, controlling digestion and gut function independently of the central nervous system.

Neuron Types

are various kinds of nerve cells classified based on their function, structure, neurotransmitter released, and direction of signal sent; including sensory, motor, and interneurons.

Neural Circuits

Complex networks of neurons that work together to carry out specific functions in the nervous system.

Related Questions