Examlex

Solved

In the Multiple Regression Model with Two Explanatory Variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i }

question 46

Essay

In the multiple regression model with two explanatory variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i } the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ):
β^0=Yˉβ^1Xˉ1β^2Xˉ2β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2β^2=i=1nyix2ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\begin{array} { c } \hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } \\\\\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } \\\\\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }\end{array}
You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)\left( X _ { 1 i } \right) and the saving rate (X2i)\left( X _ { 2 i } \right) (average investment share of GDP from 1980 to 1990 ) on GDP per worker (relative to the U.S.)in 1990.The various sums needed to calculate the OLS estimates are given
below: i=1nYi=33.33;i=1nX1i=2.025;i=1nX2i=17.313i=1nyi2=8.3103;i=1nx1i2=.0122;i=1nx2i2=0.6422i=1nyix1i=0.2304;i=1nyix2i=1.5676;i=1nx1ix2i=0.0520\begin{array} { c } \sum _ { i = 1 } ^ { n } Y _ { i } = 33.33 ; \sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025 ; \sum _ { i = 1 } ^ { n } X _ { 2 i } = 17.313 \\\\\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122 ; \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422 \\\\\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304 ; \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } = - 0.0520\end{array} The heteroskedasticity-robust standard errors of the two slope coefficients are 1.99 (for
population growth)and 0.23 (for the saving rate).Calculate the 95% confidence interval
for both coefficients.How many standard deviations are the coefficients away from zero?


Definitions:

Fees Earned

Revenue generated from services provided or work performed, often used in the context of professional services like legal or consulting firms.

Office Supplies Expense

Office supplies expense is the cost associated with purchasing supplies used in the daily operations of an office, such as paper, pens, and ink cartridges.

Interest Revenue

The income earned from lending money or through investments in interest-bearing financial instruments.

Accounts Payable

Liabilities owed to suppliers or creditors for goods and services received that have not yet been paid for.

Related Questions