Examlex

Solved

(Advanced) Unbiasedness and Small Variance Are Desirable Properties of Estimators μ^\hat { \mu }

question 56

Essay

(Advanced) Unbiasedness and small variance are desirable properties of estimators. However, you can imagine situations where a trade-off exists between the two: one estimator may be have a small bias but a much smaller variance than another, unbiased estimator. The concept of "mean square error" estimator combines the two concepts. Let μ^\hat { \mu } be an estimator of μ\mu Then the mean square error (MSE) is defined as follows: MSE(μ^)=E(μ^μ)2. Prove that MSE(μ^)=bias2+var(μ^)\operatorname { MSE } ( \hat { \mu } ) = E ( \hat { \mu } - \mu ) ^ { 2 } \text {. Prove that } \operatorname { MSE } ( \hat { \mu } ) = \operatorname { bias } ^ { 2 } + \operatorname { var } ( \hat { \mu } ) \text {. }
(Hint: subtract and add E(μ^) in E(μ^μ)2.)\left. E ( \hat { \mu } ) \text { in } E ( \hat { \mu } - \mu ) ^ { 2 } . \right)


Definitions:

Related Questions