Examlex

Solved

(Requires Matrix Algebra)The Population Multiple Regression Model Can Be Written Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U }

question 19

Essay

(Requires Matrix Algebra)The population multiple regression model can be written in
matrix form as Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U } Where
Y=(Y1Y2Yn),U=(u1u2un),X=(1X11Xk1W11Wr11X12Xk2W12Wr21X1nXknW1nWrn) and β=(β0β1βk)\boldsymbol { Y } = \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\\vdots \\Y _ { n }\end{array} \right) , \boldsymbol { U } = \left( \begin{array} { l } u _ { 1 } \\u _ { 2 } \\\vdots \\u _ { n }\end{array} \right) , \boldsymbol { X } = \left( \begin{array} { c c c c c c c } 1 & X _ { 11 } & \cdots & X _ { k 1 } & W _ { 11 } & \cdots & W _ { r 1 } \\1 & X _ { 12 } & \cdots & X _ { k 2 } & W _ { 12 } & \cdots & W _ { r 2 } \\\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\1 & X _ { 1 n } & \cdots & X _ { k n } & W _ { 1 n } & \cdots & W _ { r n }\end{array} \right) \text { and } \beta = \left( \begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\vdots \\\beta _ { k }\end{array} \right) Note that the X matrix contains both k endogenous regressors and (r +1)included
exogenous regressors (the constant is obviously exogenous).
The instrumental variable estimator for the overidentified case is β^V=[XZ(ZZ)1ZX]1XZ(ZZ)1ZY,\hat { \beta } ^ { V } = \left[ X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } X \right] ^ { - 1 } X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } Y ,
where Z\boldsymbol { Z } is a matrix, which contains two types of variables: first the rr included exogenous regressors plus the constant, and second, mm instrumental variables.
Z=(1Z11Zm1W11Wr11Z12Zm2W12Wr21Z1nZmnW1nWm)Z = \left( \begin{array} { c c c c c c c } 1 & Z _ { 11 } & \cdots & Z _ { m 1 } & W _ { 11 } & \cdots & W _ { r 1 } \\1 & Z _ { 12 } & \cdots & Z _ { m 2 } & W _ { 12 } & \cdots & W _ { r 2 } \\\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\1 & Z _ { 1 n } & \cdots & Z _ { m n } & W _ { 1 n } & \cdots & W _ { m }\end{array} \right)
It is of order n×(m+r+1)\mathrm { n } \times ( \mathrm { m } + \mathrm { r } + 1 ) .
For this estimator to exist, both (ZZ)\left( Z ^ { \prime } Z \right) and [XZ(ZZ)1ZX]\left[ X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } X \right] must be invertible. State the conditions under which this will be the case and relate them to the degree of overidentification.

Understand the dynamics of rejection and exclusion in various social contexts, including families, schools, and sports.
Distinguish between the quality and quantity of relationships and their impact on loneliness.
Recognize the importance of interpersonal skills and the ability to perceive others' emotional states in preventing loneliness.
Understand the concept of the "bad apple effect" and its implications for group behavior and conformity.

Definitions:

Related Questions