Examlex

Solved

(Requires Matrix Algebra)Consider the Time and Entity Fixed Effect Model

question 26

Essay

(Requires Matrix Algebra)Consider the time and entity fixed effect model with a single
explanatory variable Yit=β0+β1Xit+γ2D2i++γnDni+δ2B2t++δTBTt+uitY _ { i t } = \beta _ { 0 } + \beta _ { 1 } X _ { i t } + \gamma _ { 2 } D 2 _ { i } + \ldots + \gamma _ { n } D n _ { i } + \delta _ { 2 } B 2 _ { t } + \ldots + \delta _ { T } B T _ { t } + u _ { i t } For the case of n=4n = 4 and T=3T = 3 , write this model in the form Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U } , where, in general,
Y=(Y1Y2Yn),U=(u1u2un),X=(1X11Xk11X12Xk21X1nXkn)=(X1X2Xn), and β=(β0β1βk)\boldsymbol { Y } = \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\\vdots \\Y _ { n }\end{array} \right) , \boldsymbol { U } = \left( \begin{array} { l } u _ { 1 } \\u _ { 2 } \\\vdots \\u _ { n }\end{array} \right) , \boldsymbol { X } = \left( \begin{array} { c c c c } 1 & X _ { 11 } & \cdots & X _ { k 1 } \\1 & X _ { 12 } & \cdots & X _ { k 2 } \\\vdots & \vdots & \ddots & \vdots \\1 & X _ { 1 n } & \cdots & X _ { k n }\end{array} \right) = \left( \begin{array} { l } \boldsymbol { X } _ { 1 } ^ { \prime } \\\boldsymbol { X } _ { 2 } ^ { \prime } \\\vdots \\\boldsymbol { X } _ { n } ^ { \prime }\end{array} \right) \text {, and } \boldsymbol { \beta } = \left( \begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\vdots \\\beta _ { k }\end{array} \right) How would the X\boldsymbol { X } matrix change if you added two binary variables, D1D 1 and B1B 1 ? Demonstrate that in this case the columns of the X\boldsymbol { X } matrix are not independent. Finally show that elimination of one of the two variables is not sufficient to get rid of the multicollinearity problem. In terms of the OLS estimator, β^=(XX)1XY\hat { \boldsymbol { \beta } } = \left( \boldsymbol { X } ^ { \prime } \boldsymbol { X } \right) ^ { - 1 } \boldsymbol { X } ^ { \prime } \boldsymbol { Y } , why does perfect multicollinearity create a problem?


Definitions:

Laissez-faire Capitalism

An economic system where government intervention in business and markets is minimal, and the forces of supply and demand are allowed to regulate the economy.

Central Planning

A system where economic decisions, such as the allocation of resources, are made by the government or a centralized authority.

Market System

An economic system in which market forces of supply and demand guide the production of goods and services and their distribution.

Property Rights

The theoretical and legal ownership rights assigned to the use, control, and transfer of property, which can be applied to both physical and intellectual properties.

Related Questions