Examlex

Solved

SCENARIO 17-3 a Financial Analyst Wanted to Examine the Relationship $1,000\$ 1,000

question 328

Short Answer

SCENARIO 17-3 A financial analyst wanted to examine the relationship between salary (in $1,000\$ 1,000 ) and 4 variables: age (X1=Age)\left( X _ { 1 } = \mathrm { Age } \right) , experience in the field (X2=\left( X _ { 2 } = \right. Exper )) , number of degrees (X3=\left( X _ { 3 } = \right. Degrees )) , and number of previous jobs in the field ( X4=X _ { 4 } = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:

SUMMARY OUTPUT

 Regression Statistics  Multiple R 0.992 R Square 0.984 Adjusted R Square 0.979 Standard Error 2.26743 Observations 20\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.992 \\\text { R Square } & 0.984 \\\text { Adjusted R Square } & 0.979 \\\text { Standard Error } & 2.26743 \\\text { Observations } & 20\end{array}


df SS  MS F Signif F Regression 44609.831641152.45791224.1600.0001 Residual 1577.118365.14122 Total 194686.95000\begin{array}{lrrrrr} & d f &{\text { SS }} & \text { MS } & F & \text { Signif } F \\\text { Regression } & 4 & 4609.83164 & 1152.45791 & 224.160 & 0.0001 \\\text { Residual } & 15 & 77.11836 & 5.14122 & & \\\text { Total } & 19 & 4686.95000 & & &\end{array}

 Coeff  StdError  Stat  P-value  Intercept 9.6111982.779886383.4570.0035 Age 1.3276950.1149193011.5530.0001 Exper 0.1067050.142655590.7480.4660 Degrees 7.3113320.803241879.1020.0001 Prevjobs 0.5041680.447715731.1260.2778\begin{array}{lrrrr} & {\text { Coeff }} & \text { StdError } & {\text { Stat }} & \text { P-value } \\\text { Intercept } & -9.611198 & 2.77988638 & -3.457 & 0.0035 \\\text { Age } & 1.327695 & 0.11491930 & 11.553 & 0.0001 \\\text { Exper } & -0.106705 & 0.14265559 & -0.748 & 0.4660 \\\text { Degrees } & 7.311332 & 0.80324187 & 9.102 & 0.0001 \\\text { Prevjobs } & -0.504168 & 0.44771573 & -1.126 & 0.2778\end{array}
-Referring to Scenario 17-3, the predicted salary for a 35-year-old person with 10 years of
experience, 3 degrees, and 1 previous job is ________.


Definitions:

Ordinal Scale

The scale of measurement for a variable if the data exhibit the properties of nominal data and the order or rank of the data is meaningful. Ordinal data may be nonnumeric or numeric.

Interval Scale

The scale of measurement for a variable if the data demonstrate the properties of ordinal data and the interval between values is expressed in terms of a fixed unit of measure. Interval data are always numeric.

Ratio Scale

The scale of measurement for a variable if the data demonstrate all the properties of interval data and the ratio of two values is meaningful. Ratio data are always numeric.

Nominal Scale

The scale of measurement for a variable when the data are labels or names used to identify an attribute of an element. Nominal data may be nonnumeric or numeric.

Related Questions