Examlex

Solved

SCENARIO 17-7
as a Project for His Business Statistics Class Yi=α+β1X1i+β2X2i+β3X3i+εY _ { i } = \alpha + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + \beta _ { 3 } X _ { 3 i } + \varepsilon

question 180

Multiple Choice

SCENARIO 17-7
As a project for his business statistics class, a student examined the factors that determined parking
meter rates throughout the campus area. Data were collected for the price per hour of parking, blocks
to the quadrangle, and one of the three jurisdictions: on campus, in downtown and off campus, or
outside of downtown and off campus. The population regression model hypothesized is Yi=α+β1X1i+β2X2i+β3X3i+εY _ { i } = \alpha + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + \beta _ { 3 } X _ { 3 i } + \varepsilon
where
YY is the meter price
XlX _ { l } is the number of blocks to the quad
X2X _ { 2 } is a dummy variable that takes the value 1 if the meter is located in downtown and off campus and the value 0 otherwise
X3X _ { 3 } is a dummy variable that takes the value 1 if the meter is located outside of downtown and off campus, and the value 0 otherwise

The following Excel results are obtained.

 Regression Statistics  Multiple R 0.9659 R Square 0.9331 Adjusted R Square 0.9294 Standard Error 0.0327 Observations 58\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.9659 \\\text { R Square } & 0.9331 \\\text { Adjusted R Square } & 0.9294 \\\text { Standard Error } & 0.0327 \\\text { Observations } & 58\end{array}

 ANOVA \text { ANOVA }
Df SS  MS F Significance F Regression 30.80940.2698251.19950.0000 Residual 540.05800.0010 Total 570.8675\begin{array}{lrrrrr}\hline & D f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 3 & 0.8094 & 0.2698 & 251.1995 & 0.0000 \\\text { Residual } & 54 & 0.0580 & 0.0010 & & \\\text { Total } & 57 & 0.8675 & & & \\\hline\end{array}

 Coefficients Standard Error t Stat P-value  Intercept 0.51180.013637.46752.4904X10.00450.00341.32760.1898X20.23920.012319.39420.0000X30.00020.01230.02140.9829\begin{array}{lrrrr}\hline & \text { Coefficients }& \text {Standard Error } &{t \text { Stat }} & {P \text {-value }} \\\hline \text { Intercept } & 0.5118 & 0.0136 & 37.4675 & 2.4904 \\\mathrm{X}_{1} & -0.0045 & 0.0034 & -1.3276 & 0.1898 \\\mathrm{X}_{2} & -0.2392 & 0.0123 & -19.3942 & 0.0000 \\\mathrm{X}_{3} & -0.0002 & 0.0123 & -0.0214 & 0.9829\end{array}
-Referring to Scenario 17-7, what is the correct interpretation for the estimated coefficient for X2X _ { 2 } ?


Definitions:

Population Proportions

It denotes the fraction or percentage of a population having a particular property or attribute.

Sample Proportions

Measures that represent the fraction of the sample that exhibits a particular attribute or characteristic.

Population Proportions

Fractions or percentages of a population that fall into various categories, often used in polling and survey results.

Estimator

A statistic used to estimate the value of a population parameter.

Related Questions