Examlex

Solved

SCENARIO 16-13
Given Below Is the Monthly Time Series Data

question 21

Short Answer

SCENARIO 16-13
Given below is the monthly time series data for U.S. retail sales of building materials over a
specific year.  Month  Retail Sales 16,59426,61038,17449,513510,595610,41579,94989,81099,637109,732119,214129,201\begin{array} { | c | c | } \hline \text { Month } & \text { Retail Sales } \\\hline 1 & 6,594 \\\hline 2 & 6,610 \\\hline 3 & 8,174 \\\hline 4 & 9,513 \\\hline 5 & 10,595 \\\hline 6 & 10,415 \\\hline 7 & 9,949 \\\hline 8 & 9,810 \\\hline 9 & 9,637 \\\hline 10 & 9,732 \\\hline 11 & 9,214 \\\hline 12 & 9,201 \\\hline\end{array} The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive,
second-order autoregressive and third-order autoregressive model are presented below in which
the coded month for the 1st month is 0:  Linear trend model: \text { Linear trend model: }
 Coefficients  Standard Error  t Stat  P-value  Intercept 7950.7564617.634212.87290.0000 Coded Month 212.650395.11452.23570.0494\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\\hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\\text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494\end{array}

 Quadratic trend model: \text { Quadratic trend model: }
 SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year.  \begin{array} { | c | c | }  \hline \text { Month } & \text { Retail Sales } \\ \hline 1 & 6,594 \\ \hline 2 & 6,610 \\ \hline 3 & 8,174 \\ \hline 4 & 9,513 \\ \hline 5 & 10,595 \\ \hline 6 & 10,415 \\ \hline 7 & 9,949 \\ \hline 8 & 9,810 \\ \hline 9 & 9,637 \\ \hline 10 & 9,732 \\ \hline 11 & 9,214 \\ \hline 12 & 9,201 \\ \hline \end{array}  The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  \text { Linear trend model: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\ \text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494 \end{array}    \text { Quadratic trend model: }       \text { Exponential trend model: }   \begin{array}{lrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\ \text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376 \end{array}     \text { First-order autoregressive: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\ \hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\ \text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\ \hline \end{array}    -Referring to Scenario 16-13, what is your forecast for the  13 ^ { \text {th } }  month using the first-order autoregressive model?

 Exponential trend model: \text { Exponential trend model: }
 Coefficients  Standard Error  t Stat  P-value  Intercept 3.89120.0315123.36740.0000 Coded Month 0.01160.00492.39570.0376\begin{array}{lrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\\hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\\text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376\end{array}


 First-order autoregressive: \text { First-order autoregressive: }
 Coefficients  Standard Error t Stat  P-value  Intercept 3132.09511287.28992.43310.0378 YLag1 0.68230.13984.88120.0009\begin{array}{lrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\\hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\\text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\\hline\end{array}


-Referring to Scenario 16-13, what is your forecast for the 13th 13 ^ { \text {th } } month using the first-order
autoregressive model?


Definitions:

Positive Effect

A beneficial impact or outcome resulting from a particular action or set of conditions.

Connotative Meaning

The meaning of a word or phrase that is based on past personal experiences or associations.

Manipulate Others

The act of influencing or controlling someone's behavior or emotions for one's own purposes, often without their knowledge.

Language

A system of communication used by a particular community or country, consisting of written, spoken, or signed words and the rules for combining them to convey meaning.

Related Questions