Examlex

Solved

Provide an Appropriate Response P(x)=n!(nx)!x!pxqnxP ( x ) = \frac { n ! } { ( n - x ) ! x ! } \cdot p ^ { x } \cdot q ^ { n - x }

question 84

Essay

Provide an appropriate response.
-Identify each of the variables in the Binomial Probability Formula. P(x)=n!(nx)!x!pxqnxP ( x ) = \frac { n ! } { ( n - x ) ! x ! } \cdot p ^ { x } \cdot q ^ { n - x }
Also, explain what the fraction n!(nx)!x!\frac { n ! } { ( n - x ) ! x ! } computes.


Definitions:

Test Statistic

A value calculated from sample data during a hypothesis test that determines whether to reject the null hypothesis.

Approximately Normal

Describes data that roughly follows a normal distribution, though it may not perfectly fit the normal curve.

Z Test Statistic

A type of statistical test where the test statistic follows a normal distribution under the null hypothesis.

Population Proportion

The fraction or percentage of a population that possesses a particular attribute or characteristic.

Related Questions