Examlex

Solved

Suppose the Variable X Represents Students, Y Represents Courses, and T(x

question 201

Short Answer

suppose the variable x represents students, y represents courses, and T(x, y) means "x is taking y."  Match the English statement with all its equivalent symbolic statements in this list: 1.xyT(x,y)2.yxT(x,y)3.xyT(x,y)4.¬xyT(x,y)5.xy¬T(x,y)6.yxT(x,y)7.yx¬T(x,y)8.¬xyT(x,y)9.¬yxT(x,y)10.¬xy¬T(x,y)11.¬x¬y¬T(x,y)12.xy¬T(x,y)\begin{array}{l}\text { Match the English statement with all its equivalent symbolic statements in this list: }\\\begin{aligned}1 . & \exists x \forall y T ( x , y ) & 2 . & \exists y \forall x T ( x , y ) & 3 . & \forall x \exists y T ( x , y ) \\4 . & \neg \exists x \exists y T ( x , y ) & 5 . & \exists x \forall y \neg T ( x , y ) & 6 . & \forall y \exists x T ( x , y ) \\7 . & \exists y \forall x \neg T ( x , y ) & 8 . & \neg \forall x \exists y T ( x , y ) & 9 . & \neg \exists y \forall x T ( x , y ) \\10 . & \neg \forall x \exists y \neg T ( x , y ) & 11 . & \neg \forall x \neg \forall y \neg T ( x , y ) & 12 . & \forall x \exists y \neg T ( x , y )\end{aligned}\end{array}
-Every course is being taken by at least one student.


Definitions:

Company

An entity formed to engage in a business, trade, or industrial activity, typically characterized by its legal independence and ownership structure.

Customer Relationship Management

A strategy for managing an organization's interactions with current and potential customers, often using data analysis to study large amounts of information.

Shopping Patterns

The behaviors and tendencies displayed by consumers when selecting, purchasing, and using goods and services.

Sales Offers

Promotional deals or discounts provided to consumers to encourage the purchase of products or services.

Related Questions