Examlex

Solved

The Following MINITAB Output Presents a Multiple Regression Equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }

question 43

True/False

The following MINITAB output presents a multiple regression equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 } +b4x4+ b _ { 4 } x _ { 4 } .
The regression equation is
Y=3.9695+1.4577X11.7859X2+0.7686X3+0.0777X4\mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4
 Predictor  Coef  SE Coef  T  P  Constant 3.96950.87850.92990.327 X1 1.45770.60343.51070.003 X2 1.78590.73023.11480.005 X3 0.76860.67321.92940.088 X4 0.07770.75691.07820.352\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\\text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\\text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\\text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\\text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352\end{array}
 The following MINITAB output presents a multiple regression equation  y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }   + b _ { 4 } x _ { 4 } . The regression equation is  \mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\ \text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\ \text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\ \text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\ \text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352 \end{array}        \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\ \text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\ \text { Total } & 38 & 2,232.6 & & & \\ \hline \end{array}   Is the model useful for prediction? Use the  = 0.05 level.



 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 41,148.7287.29.00310.003 Residual Error 341,083.931.9 Total 382,232.6\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\\text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\\text { Total } & 38 & 2,232.6 & & & \\\hline\end{array}
Is the model useful for prediction? Use the  = 0.05 level.


Definitions:

T-bill

Short-term government securities issued at a discount from the face value and maturing at par, used to finance government debt.

Issue Date

The specific date on which a financial instrument is issued or becomes effective.

Simple Rate of Interest

Interest calculated only on the principal amount of a loan or deposit, without compounding.

Commercial Paper

An unsecured, short-term debt instrument issued by a corporation, typically used for the financing of payroll, accounts payable, inventories, and meeting other short-term liabilities.

Related Questions