Examlex
Solve the problem using a graphing calculator.
-A Ferris wheel with a radius of 36 feet turns clockwise at the rate of one revolution every 12 sec. The lowest point of the Ferris wheel is 13 feet above ground level at the point on a rectangular coordinate system. Find parametric equations for the position of a person on the Ferris wheel as a function of time (in seconds) if the Ferris wheel starts with the person at the point .
Q22: <span class="ql-formula" data-value="\mathbf { u } =
Q24: <span class="ql-formula" data-value="\mathbf { u } =
Q79: <span class="ql-formula" data-value="\frac { \cot ^ {
Q187: <span class="ql-formula" data-value="\sin \left( \frac { \pi
Q220: <span class="ql-formula" data-value="\sin 2 x - \cos
Q248: <span class="ql-formula" data-value="\mathbf { u } =
Q278: <span class="ql-formula" data-value="A = \left[ \begin{array} {
Q306: <span class="ql-formula" data-value="\begin{array}{l}\text { (6) } \mathrm{R}_{2}+\mathrm{R}_{3}\\\left[\begin{array}{rrr}-3
Q307: <span class="ql-formula" data-value="\sin 4 x \cos x
Q352: <span class="ql-formula" data-value="\begin{array} { l } 6