Examlex

Solved

Use This Information,along with Its Associated Sensitivity Report,to Answer the Following

question 25

Multiple Choice

Use this information,along with its associated Sensitivity Report,to answer the following questions.
A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.
 Product  Material 1 (lbs)  Material 2 (lbs.)  Labor (hours)  A324B142C5 none 3.5\begin{array} { | c | c | c | c | } \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } ) } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . ) } & \text { Labor (hours) } \\\hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\\hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\\hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\\hline\end{array}
Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.
 Formulation   Max 10 A+10 B+10C Subject to: 3 A+B+5C300 (constraint #1)  2 A+4 B400 (constraint #2)  4 A+2 B+3.5C200 (constraint #3)  C10 (constraint #4)  A,B,C0\begin{array}{l}\text { Formulation }\\\begin{array} { l l } \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\\text { Subject to: } & \\& 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1) } \\& 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2) } \\& 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3) } \\& \mathrm { C } \geq 10 \text { (constraint \#4) } \\& \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0\end{array}\end{array}
 Use this information,along with its associated Sensitivity Report,to answer the following questions. A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.   \begin{array} { | c | c | c | c | }  \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } )  } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . )  } & \text { Labor (hours)  } \\ \hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\ \hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\ \hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\ \hline \end{array}   Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.   \begin{array}{l} \text { Formulation }\\ \begin{array} { l l }  \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\ \text { Subject to: } & \\ & 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1)  } \\ & 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2)  } \\ & 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3)  } \\ & \mathrm { C } \geq 10 \text { (constraint \#4)  } \\ & \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0 \end{array} \end{array}      -Suppose that the objective function coefficient for product C increases by $8.What impact will this have on the current values of the optimal solution? A) No change. B) Current solution will change. C) Solution will become infeasible. D) Solution will become unbounded. E) Not enough information is provided.
-Suppose that the objective function coefficient for product C increases by $8.What impact will this have on the current values of the optimal solution?


Definitions:

Emissions Tax

An emissions tax is designed to reduce environmental harm by charging a fee for the emission of pollutants, incentivizing businesses and individuals to decrease their environmental impact.

Socially Optimal

A condition or outcome that maximizes the well-being of society as a whole, often considered in economic policies or strategies.

Marginal Social Cost

The total cost to society of producing one additional unit of a good or service, including both private costs and externalities.

Marginal Social Benefit

The additional benefit that society gains from consuming an additional unit of a good or service.

Related Questions