Examlex

Solved

Use This Information to Answer the Following Questions -Use the Sensitivity Report to Answer the Following Questions:
A

question 2

Essay

Use this information to answer the following questions.
An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.
 Use this information to answer the following questions. An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.     On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.   \begin{array}{ccccccc} \hline \text { Cell } & \text { Name } & \begin{array}{c} \text { Final } \\ \text { Value } \end{array} & \begin{array}{c} \text { Reduced } \\ \text { Cost } \end{array} & \begin{array}{c} \text { Objective } \\ \text { Coefficient } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Increase } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\ \hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\ \hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\ \hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\ \hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\ \hline \end{array}     \begin{array}{l} \text { Constraints }\\ \begin{array} { l l c c c c c }  \hline \text { Cell } & \text { Name } & \begin{array} { c }  \text { Final } \\ \text { Value } \end{array} & \begin{array} { c }  \text { Shadow } \\ \text { Price } \end{array} & \begin{array} { c }  \text { Constraint } \\ \text { R.H. Side } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Increase } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\ \hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\ \hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\ \hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\ \hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\ \hline \end{array} \end{array}  -Use the Sensitivity Report to answer the following questions: a.What is the total minimal processing time in hours? b.Suppose that secretary A can process a type 2 claim in two hours rather than three hours.How would this impact the current optimal solution? c.Assume that secretary C can process a type 4 claim in 6 hours rather than 5 hours.How would this impact the current optimal solution? d.Currently,secretary C is not processing any type 4 claims.Suppose that we force secretary four to process one type 4 claim.What impact would this have on the optimal solution?
On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease  SC$13  A1 50211E+30 SD$13  A2 0131E+301 SE$13  A3 0121E+301 SF$13  A4 0341E+303 SC$14  B1 0241E+302 SD$14  B2 0351E+303 SE$14  B3 0231E+302 SF$14  B4 30131E+30 SC$15  C1 0131E+301 SD$15  C2 40211E+30 SE$15  C3 20111E+30 SF$15  C4 0451E+304\begin{array}{ccccccc}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\\hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\\hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\\hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\\hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\\hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\\hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\\hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\\hline\end{array}

 Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease  $G$13  A constraint 100401E+3030 $G$14  B constraint 30401E+3037 $G$15  C constraint 100401E+3030 $C$16  Claim Type 1 525155 $D$16  Claim Type 2 424154 $E$16  Claim Type 3 212302 $F$16  Claim Type 4 313373\begin{array}{l}\text { Constraints }\\\begin{array} { l l c c c c c } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Shadow } \\\text { Price }\end{array} & \begin{array} { c } \text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\\hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\\hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\\hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\\hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\\hline\end{array}\end{array}
-Use the Sensitivity Report to answer the following questions:
a.What is the total minimal processing time in hours?
b.Suppose that secretary A can process a type 2 claim in two hours rather than three hours.How would this impact the current optimal solution?
c.Assume that secretary C can process a type 4 claim in 6 hours rather than 5 hours.How would this impact the current optimal solution?
d.Currently,secretary C is not processing any type 4 claims.Suppose that we force secretary four to process one type 4 claim.What impact would this have on the optimal solution?

Understand the influence of language names on color perception across cultures.
Grasp the significance of Benjamin Whorf's contributions to psychology and the linguistic relativity hypothesis.
Identify protection factors against neurodegenerative diseases associated with bilingualism.
Understand the principles for interpreting contracts and the importance of parties' intent.

Definitions:

Traditional Square of Opposition

The traditional square of opposition is a diagram representing the relations between four types of categorical propositions, showcasing how they interact logically through contradiction, contrariety, and other relations.

Relationships

The way in which two or more concepts, objects, or people are connected, or the state of being connected.

Singular Proposition

A statement that refers to a specific instance or member within a category rather than the category as a whole.

Singular Term

A term that refers to a single specific object or individual in a logical or philosophical argument.

Related Questions