Examlex

Solved

Use This Information,along with Its Associated Sensitivity Report,to Answer the Following

question 44

Multiple Choice

Use this information,along with its associated Sensitivity Report,to answer the following questions.
A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.
 Product  Material 1 (lbs)  Material 2 (lbs.)  Labor (hours)  A324B142C5 none 3.5\begin{array} { | c | c | c | c | } \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } ) } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . ) } & \text { Labor (hours) } \\\hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\\hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\\hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\\hline\end{array}
Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.
 Formulation   Max 10 A+10 B+10C Subject to: 3 A+B+5C300 (constraint #1)  2 A+4 B400 (constraint #2)  4 A+2 B+3.5C200 (constraint #3)  C10 (constraint #4)  A,B,C0\begin{array}{l}\text { Formulation }\\\begin{array} { l l } \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\\text { Subject to: } & \\& 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1) } \\& 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2) } \\& 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3) } \\& \mathrm { C } \geq 10 \text { (constraint \#4) } \\& \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0\end{array}\end{array}
 Use this information,along with its associated Sensitivity Report,to answer the following questions. A production manager wants to determine how many units of each product to produce weekly to maximize weekly profits.Production requirements for the products are shown in the following table.   \begin{array} { | c | c | c | c | }  \hline \underline { \text { Product } } & \frac { \text { Material 1 } } { ( \mathrm { lbs } )  } & \frac { \text { Material 2 } } { ( \mathrm { lbs } . )  } & \text { Labor (hours)  } \\ \hline \underline { \underline { \mathrm { A } } } & \underline { 3 } & \underline { 2 } & \underline { 4 } \\ \hline \underline { \mathrm { B } } & \underline { 1 } & \underline { 4 } & \underline { 2 } \\ \hline \underline { \mathrm { C } } & \underline { 5 } & \underline { \text { none } } & \underline { 3.5 } \\ \hline \end{array}   Material 1 costs $7 a pound,material 2 costs $5 a pound,and labor costs $15 per hour.Product A sells for $101 a unit,product B sells for $67 a unit,and product C sells for $97.50 a unit.Each week there are 300 pounds of material 1;400 pounds of material 2;and 200 hours of labor.The output of product A should not be more than one-half of the total number of units produced.Moreover,there is a standing order of 10 units of product C each week.   \begin{array}{l} \text { Formulation }\\ \begin{array} { l l }  \ { \text { Max } } & 10 \mathrm {~A} + 10 \mathrm {~B} + 10 \mathrm { C } \\ \text { Subject to: } & \\ & 3 \mathrm {~A} + \mathrm { B } + 5 \mathrm { C } \leq 300 \text { (constraint \#1)  } \\ & 2 \mathrm {~A} + 4 \mathrm {~B} \leq 400 \text { (constraint \#2)  } \\ & 4 \mathrm {~A} + 2 \mathrm {~B} + 3.5 \mathrm { C } \leq 200 \text { (constraint \#3)  } \\ & \mathrm { C } \geq 10 \text { (constraint \#4)  } \\ & \mathrm { A } , \mathrm { B } , \mathrm { C } \geq 0 \end{array} \end{array}      -Suppose that we force the production of one unit of product A.The new objective function value will be A) $925 B) $915 C) $935 D) $900 E) Not enough information is provided.
-Suppose that we force the production of one unit of product A.The new objective function value will be


Definitions:

Americans

Residents or citizens of the United States, often referring to their culture, society, or characteristics.

Situated Cognition

A belief that one’s culture and one’s everyday surroundings and tasks set both boundaries and possibilities for the cognitive tasks that are practiced, and therefore strengthened, during the normal course of daily living.

Flexibility

The capacity to adapt thoughts and behaviors in response to changing circumstances or new information.

Related Questions