Examlex

Solved

Use This Information to Answer the Following Questions -Use the Sensitivity Report to Answer the Following Questions:
A

question 2

Essay

Use this information to answer the following questions.
An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.
 Use this information to answer the following questions. An insurance company has three secretaries,A,B,and C that each is capable of processing four different types of insurance claims.The amount of time required by each secretary to process a particular type of a claim is summarized in the following table.     On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.   \begin{array}{ccccccc} \hline \text { Cell } & \text { Name } & \begin{array}{c} \text { Final } \\ \text { Value } \end{array} & \begin{array}{c} \text { Reduced } \\ \text { Cost } \end{array} & \begin{array}{c} \text { Objective } \\ \text { Coefficient } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Increase } \end{array} & \begin{array}{c} \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\ \hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\ \hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\ \hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\ \hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\ \hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\ \hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\ \hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\ \hline \end{array}     \begin{array}{l} \text { Constraints }\\ \begin{array} { l l c c c c c }  \hline \text { Cell } & \text { Name } & \begin{array} { c }  \text { Final } \\ \text { Value } \end{array} & \begin{array} { c }  \text { Shadow } \\ \text { Price } \end{array} & \begin{array} { c }  \text { Constraint } \\ \text { R.H. Side } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Increase } \end{array} & \begin{array} { c }  \text { Allowable } \\ \text { Decrease } \end{array} \\ \hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\ \hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\ \hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\ \hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\ \hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\ \hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\ \hline \end{array} \end{array}  -Use the Sensitivity Report to answer the following questions: a.What is the total minimal processing time in hours? b.Suppose that secretary A can process a type 2 claim in two hours rather than three hours.How would this impact the current optimal solution? c.Assume that secretary C can process a type 4 claim in 6 hours rather than 5 hours.How would this impact the current optimal solution? d.Currently,secretary C is not processing any type 4 claims.Suppose that we force secretary four to process one type 4 claim.What impact would this have on the optimal solution?
On a typical week,the insurance firm has 5 type 1 claims,4 type 2 claims,2 type 3 claims,and 3 type 4 claims.Each secretary works a maximum of 40 hours per week.The office manager wants to know how many of each type of an insurance claim should be processed by each secretary to minimize the total processing time.
 Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease  SC$13  A1 50211E+30 SD$13  A2 0131E+301 SE$13  A3 0121E+301 SF$13  A4 0341E+303 SC$14  B1 0241E+302 SD$14  B2 0351E+303 SE$14  B3 0231E+302 SF$14  B4 30131E+30 SC$15  C1 0131E+301 SD$15  C2 40211E+30 SE$15  C3 20111E+30 SF$15  C4 0451E+304\begin{array}{ccccccc}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { SC\$13 } & \text { A1 } & 5 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline \text { SD\$13 } & \text { A2 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SE\$13 } & \text { A3 } & 0 & 1 & 2 & 1 \mathrm{E}+30 & 1 \\\hline \text { SF\$13 } & \text { A4 } & 0 & 3 & 4 & 1 \mathrm{E}+30 & 3 \\\hline \text { SC\$14 } & \text { B1 } & 0 & 2 & 4 & 1 \mathrm{E}+30 & 2 \\\hline\text { SD\$14 } & \text { B2 } & 0 & 3 & 5 & 1 \mathrm{E}+30 & 3 \\\hline \text { SE\$14 } & \text { B3 } & 0 & 2 & 3 & 1 \mathrm{E}+30 & 2 \\\hline \text { SF\$14 } & \text { B4 } & 3 & 0 & 1 & 3 & 1 \mathrm{E}+30 \\\hline\text { SC\$15 } & \text { C1 } & 0 & 1 & 3 & 1 \mathrm{E}+30 & 1 \\\hline\text { SD\$15 } & \text { C2 } & 4 & 0 & 2 & 1 & 1 \mathrm{E}+30 \\\hline\text { SE\$15 } & \text { C3 } & 2 & 0 & 1 & 1 & 1 \mathrm{E}+30 \\\hline\text { SF\$15 } & \text { C4 } & 0 & 4 & 5 & 1 \mathrm{E}+30 & 4 \\\hline\end{array}

 Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease  $G$13  A constraint 100401E+3030 $G$14  B constraint 30401E+3037 $G$15  C constraint 100401E+3030 $C$16  Claim Type 1 525155 $D$16  Claim Type 2 424154 $E$16  Claim Type 3 212302 $F$16  Claim Type 4 313373\begin{array}{l}\text { Constraints }\\\begin{array} { l l c c c c c } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Shadow } \\\text { Price }\end{array} & \begin{array} { c } \text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Decrease }\end{array} \\\hline \text { \$G\$13 } & \text { A constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$G\$14 } & \text { B constraint } & 3 & 0 & 40 & 1 \mathrm { E } + 30 & 37 \\\hline \text { \$G\$15 } & \text { C constraint } & 10 & 0 & 40 & 1 \mathrm { E } + 30 & 30 \\\hline \text { \$C\$16 } & \text { Claim Type 1 } & 5 & 2 & 5 & 15 & 5 \\\hline \text { \$D\$16 } & \text { Claim Type 2 } & 4 & 2 & 4 & 15 & 4 \\\hline \text { \$E\$16 } & \text { Claim Type 3 } & 2 & 1 & 2 & 30 & 2 \\\hline \text { \$F\$16 } & \text { Claim Type 4 } & 3 & 1 & 3 & 37 & 3 \\\hline\end{array}\end{array}
-Use the Sensitivity Report to answer the following questions:
a.What is the total minimal processing time in hours?
b.Suppose that secretary A can process a type 2 claim in two hours rather than three hours.How would this impact the current optimal solution?
c.Assume that secretary C can process a type 4 claim in 6 hours rather than 5 hours.How would this impact the current optimal solution?
d.Currently,secretary C is not processing any type 4 claims.Suppose that we force secretary four to process one type 4 claim.What impact would this have on the optimal solution?


Definitions:

Underutilization

Refers to the scenario where resources or capacities are not used to their full potential.

Culturally Diverse Clients

Clients who come from a variety of cultural backgrounds, necessitating sensitivity and adaptability in service delivery to meet their varied needs.

Providers' Abilities

The skills and competencies that service providers possess to effectively cater to the needs of their clients or patients.

White Ethnics

National immigrant groups of Eastern and Southern European descent who share a common experience of immigration to the United States and a history of oppression. Included are Italians, Poles, Greeks, Armenians, Jews, Irish, and various ethnic groups making up the Russian Republic (Czech, Lithuanian, Russian, Slovak, Ukrainian).

Related Questions