Examlex

Solved

Instruction 13-9
a Weight-Loss Clinic Wants to Use Regression Analysis

question 144

Multiple Choice

Instruction 13-9
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in kilograms) .Two variables thought to effect weight-loss are client's length of time on the weight loss program and time of session.These variables are described below:
Y = Weight-loss (in kilograms)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session,0 if not
X3 = 1 if afternoon session,0 if not (Base level = evening session)
Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:
Y = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 + ε
Partial output from Microsoft Excel follows:
Regression Statistics
 Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array} { l l } \text { Multiple R } & 0.73514 \\ \text { R Square } & 0.540438 \\ \text { Adjusted R Square } & 0.157469 \\ \text { Standard Error } & 12.4147 \\ \text { Observations } & 12 \end{array}
ANOVA
F=5.41118 Significance F=0.040201 Intercept  Coeff  StdError t Stat P-value  Length (X1) 0.08974414.1270.00600.9951 Morn Ses (X2) 6.225382.434732.549560.0479 Aft Ses (X3) 2.21727222.14160.1001410.9235 Length*Morn Ses 11.82333.15453.5589010.0165 Length*Aft Ses 0.770583.5620.2163340.83590.541473.359880.1611580.8773\begin{array} { c c c c c } F = 5.41118 & \text { Significance } F = 0.040201 & & \\ & & & & \\ \text { Intercept } & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\ \text { Length } \left( X _ { 1 } \right) & 0.089744 & 14.127 & 0.0060 & 0.9951 \\ \text { Morn Ses } \left( X _ { 2 } \right) & 6.22538 & 2.43473 & 2.54956 & 0.0479 \\ \text { Aft Ses } \left( X _ { 3 } \right) & 2.217272 & 22.1416 & 0.100141 & 0.9235 \\ \text { Length*Morn Ses } & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\ \text { Length*Aft Ses } & 0.77058 & 3.562 & 0.216334 & 0.8359 \\ & - 0.54147 & 3.35988 & - 0.161158 & 0.8773 \end{array}
-Referring to Instruction 13-9,what is the experimental unit for this analysis?


Definitions:

Mutualistic

A type of symbiotic relationship between two different species in which each benefits from the other.

Mycorrhizal Fungus

Fungi that form beneficial symbiotic relationships with the roots of plants, improving water and nutrient absorption for the plant and receiving carbohydrates in return.

Plant Root

The part of a plant that typically lies below the surface of the soil and functions in anchorage, water and nutrient absorption, and sometimes in storage.

Club Fungi

A group of fungi characterized by the production of spores on club-shaped structures called basidia.

Related Questions