Examlex

Solved

Instruction 13-16
Given Below Are Results from the Regression Analysis

question 94

True/False

Instruction 13-16
Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy)and the independent variables are the age of the worker (Age),the number of years of education received (Edu),the number of years at the previous job (Job Yr),a dummy variable for marital status (Married: 1 = married,0 = otherwise),a dummy variable for head of household (Head: 1 = yes,0 = no)and a dummy variable for management position (Manager: 1 = yes,0 = no).We shall call this Model 1.
 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } \\\text { Observations } & 40 \\\hline\end{array} ANOVA
 df  SS  MS F Significance F  Regression 611048.64151841.44025.38850.00057 Residual 3311277.2586341.7351 Total 3922325.9\begin{array}{lrrrrr}& \text { df } &{\text { SS }} & \text { MS } & F&\text { Significance F } \\\hline \text { Regression } & 6 & 11048.6415 & 1841.4402 & 5.3885 & 0.00057 \\\text { Residual } & 33 & 11277.2586 & 341.7351 & & \\\text { Total } & 39 & 22325.9 & &\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{lrrrrrr} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & -14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & -1.3537 & 1.1766 & -1.1504 & 0.2582 & -3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & -0.5914 & 1.8257 \\\text { Married } & -5.2189 & 7.6068 & -0.6861 & 0.4974 & -20.6950 & 10.2571 \\\text { Head } & -14.2978 & 7.6479 & -1.8695 & 0.0704 & -29.8575 & 1.2618 \\\text { Manager } & -24.8203 & 11.6932 & -2.1226 & 0.0414 & -48.6102 & -1.0303\end{array} Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager.The results of the regression analysis are given below:
 Regression Statistics  Multiple R 0.6391 R Square 0.4085 Adjusted R 0.3765 Square  Standard Error 18.8929 Observations 40\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.6391 \\\text { R Square } & 0.4085 \\\text { Adjusted R } & 0.3765 \\\text { Square } & \\\text { Standard Error } & 18.8929 \\\text { Observations } & 40\\\hline\end{array}  ANOVA dfSSMSF Significance F Regression 29119.08974559.544812.77400.0000 Residual 3713206.8103356.9408 Total 3922325.9 Coefficients  Standard Error t Stat P-value  Intercept 0.214311.57960.01850.9853 Age 1.44480.31604.57170.0000 Manager 22.576111.34881.98930.0541\begin{array}{l}\text { ANOVA }\\\begin{array} { l r r r l r } \hline & d f & { S S } & { M S } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 9119.0897 & 4559.5448 & 12.7740 & 0.0000 \\\text { Residual } & 37 & 13206.8103 & 356.9408 & & \\\text { Total } & 39 & 22325.9 & & & \\\hline\end{array}\\\begin{array} { l r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & P \text {-value } \\\hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\\text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\\text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\\hline\end{array}\end{array}
-Referring to Instruction 13-16 Model 1,there is sufficient evidence that the number of weeks a worker is unemployed due to a layoff depends on at least one of the explanatory variables at a 10% level of significance.

Understand the functionality and testing of circuit protection devices.
Recognize the impact of electrostatic discharge on automotive electronics.
Differentiate between the functions of automotive components across different vehicles.
Describe the deterioration effects on electrical connections and components.

Definitions:

Left Atrium

One of the four chambers of the heart, receiving oxygenated blood from the lungs and pumping it to the left ventricle.

Capillary Bed

A network of capillaries, small blood vessels, where exchange of oxygen, nutrients, and waste occurs between blood and tissues.

Diffusion

The movement of particles from an area of higher concentration to an area of lower concentration, driven by the kinetic energy of the particles, leading to an eventual equilibrium.

Nutrients

Substances obtained from food that are essential for the maintenance of normal body functions, growth, and energy production.

Related Questions