Examlex

Solved

Instruction 12-12
the Manager of the Purchasing Department of a Large

question 34

Multiple Choice

Instruction 12-12
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:
 Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error 30 Observations  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard  Error t Stat P-value  Lower 95%  Upper 95%  Intercept  Applications  Recorded 0.40240.12363.25590.00300.14920.6555\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & 30 \\\text { Observations } & \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & d f & { \text { SS } } & { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\F\end{array} } \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\\text { Error }\end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \begin{array} { l } \text { Intercept } \\\text { Applications } \\\text { Recorded }\end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline\end{array}\end{array} Note: 4.3946E-15 is 4.3946 x 10-15.
 Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:   \begin{array}{l} \begin{array} { l r }  \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r }  \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c }  \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \begin{array} { c }  \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l }  \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE) of the above regression is A) 0.1117. B) 29.0720. C) 25.9438. D) 3.1282.  Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:   \begin{array}{l} \begin{array} { l r }  \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r }  \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c }  \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \begin{array} { c }  \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l }  \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE) of the above regression is A) 0.1117. B) 29.0720. C) 25.9438. D) 3.1282.
-Referring to Instruction 12-12,the error sum of squares (SSE) of the above regression is


Definitions:

Processed Further

Refers to additional operations or treatments applied to a product after its initial processing stage.

Financial Advantage

The benefit gained in a financial aspect, which can refer to lower costs, greater returns, or other financial gains.

Industrial Fiber

Synthetic or natural fibers used for commercial and industrial applications, such as manufacturing textiles, composites, and structural materials.

Molasses

is a thick, dark syrup produced as a byproduct of refining sugar cane or sugar beets into sugar, often used in baking and cooking.

Related Questions