Examlex

Solved

The Graph of an Equation of a Sine Wave Is  amplitude =3, period =π, phaseshift =π4\text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }

question 4

Multiple Choice

The graph of an equation of a sine wave is shown in the figure. Find the amplitude, period, and phase shift.  The graph of an equation of a sine wave is shown in the figure. Find the amplitude, period, and phase shift.   A)   \text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }  ,  y = 3 \sin \left( 2 x + \frac { \pi } { 2 } \right)   B)   \text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 8 }  ,  y = 6 \sin \left( 2 x + \frac { \pi } { 2 } \right)   C)   \text { amplitude } = 4 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 6 }  ,  y = 4 \sin \left( 2 x + \frac { \pi } { 2 } \right)   D)   \text { amplitude } = 3 , \quad \text { period } = \pi , \quad \text { phaseshift } = - \frac { \pi } { 4 }  ,  y = 3 \cos \left( 2 x + \frac { \pi } { 2 } \right)   E)   \text { amplitude } = 6 , \quad \text { period } = \pi , \quad \text { phaseshift } = \frac { \pi } { 4 }  ,  y = 6 \cos \left( 2 x + \frac { \pi } { 2 } \right)

Identify the impact of sudden changes in stimulus intensity on attention and reaction.
Recognize how environmental changes affect color perception.
Explain various persuasion techniques, including the door-in-the-face technique.
Trace the path of a visual stimulus from source to perception, illustrating the complex integration of sensory information.

Definitions:

Related Questions