Examlex

Solved

The Linear Programming Problem Whose Output Follows Determines How Many

question 42

Short Answer

The linear programming problem whose output follows determines how many red nail polishes, blue nail polishes, green nail polishes, and pink nail polishes a beauty salon should stock. The objective function measures profit; it is assumed that every piece stocked will be sold. Constraint 1 measures display space in units, constraint 2 measures time to set up the display in minutes. Constraints 3 and 4 are marketing restrictions.
MAX    100x1 + 120x2 + 150x3 + 125x4
Subject to    1. x1 + 2x2 + 2x3 + 2x4 ? 108
      2. 3x1 + 5x2 + x4 ? 120
      3. x1 + x3 ? 25
      4. x2 + x3 + x4 > 50
      x1, x2, x3, x4 ? 0
Optimal Solution:
Objective Function Value = 7475.000
 Variable  Value  Reduced Costs  X1 80 X2 05 X3 170 X4 330\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Costs } \\\hline \text { X1 } & 8 & 0 \\\text { X2 } & 0 & 5 \\\text { X3 } & 17 & 0 \\\text { X4 } & 33 & 0 \\\hline\end{array}
 Constraint  Slack/Surplus  Dual Prices 1075263030254025\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Prices } \\\hline 1 & 0 & 75 \\2 & 63 & 0 \\3 & 0 & 25 \\4 & 0 & - 25 \\\hline\end{array} Objective Coefficient Ranges
 Variable  Lower Limit  Current Value  Upper Limit  X1 87.5100 none  X2  none 120125 X3 125150162 X4 120125150\begin{array} { c c c c } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline \text { X1 } & 87.5 & 100 & \text { none } \\\text { X2 } & \text { none } & 120 & 125 \\\text { X3 } & 125 & 150 & 162 \\\text { X4 } & 120 & 125 & 150\end{array} Right Hand Side Ranges
 Constraint  Lower Limit  Current Value  Upper Limit 1100108123.75257120 none 382558441.55054\begin{array} { c c c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\hline 1 & 100 & 108 & 123.75 \\2 & 57 & 120 & \text { none } \\3 & 8 & 25 & 58 \\4 & 41.5 & 50 & 54 \\\hline\end{array}
-By how much can the profit on green nail polish increase before the solution would change?


Definitions:

Distribution Half-life

The time it takes for a substance (such as a drug) to reduce to half its initial concentration in the blood or body, indicating how quickly it is processed and distributed.

Enteral

Referring to the route of medication or nutrition administration directly into the intestines, usually through a tube.

Lipid-soluble

Refers to the ability of a substance to dissolve in fats, oils, and lipids, which influences its absorption and distribution within the body.

Water-soluble

Refers to substances that can dissolve in water, indicating their ability to mix with water at the molecular level to form a homogeneous solution.

Related Questions