Examlex

Solved

LINDO Output Is Given for the Following Linear Programming Problem 5X1+8X2+5X3>=605 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60

question 1

Essay

LINDO output is given for the following linear programming problem.
MIN 12 X1 + 10 X2 + 9 X3
SUBJECT TO
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1)80.000000
2) 5X1+8X2+5X3>=605 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60
3) 8X1+10X2+5X3>=808 X 1 + 10 X 2 + 5 X 3 > = 80  VARIABLE  VALUE  REDUCED COST X1.0000004.000000X28.000000.000000X3.0000004.000000\begin{array} { l r c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\mathrm { X } 1 & .000000 & 4.000000 \\\mathrm { X } 2 & 8.000000 & .000000 \\\mathrm { X } 3 & .000000 & 4.000000\end{array} NO.ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:
 ROW  SLACK OR SURPLUS  DUAL PRICE  2) 4.000000.000000 3) 0000001.000000\begin{array} { l c c } \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\\text { 2) } & 4.000000 & .000000 \\\text { 3) } & 000000 & - 1.000000\end{array}  LINDO output is given for the following linear programming problem. MIN 12 X1 + 10 X2 + 9 X3 SUBJECT TO END LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1)80.000000  2)  5 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60  3)  8 X 1 + 10 X 2 + 5 X 3 > = 80   \begin{array} { l r c }  \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\ \mathrm { X } 1 & .000000 & 4.000000 \\ \mathrm { X } 2 & 8.000000 & .000000 \\ \mathrm { X } 3 & .000000 & 4.000000 \end{array}  NO.ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED:   \begin{array} { l c c }  \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\ \text { 2) } & 4.000000 & .000000 \\ \text { 3) } & 000000 & - 1.000000 \end{array}       a.What is the solution to the problem? b.Which constraints are binding? c.Interpret the reduced cost for x<sub>1</sub>. d.Interpret the dual price for constraint 2. e.What would happen if the cost of x<sub>1</sub> dropped to 10 and the cost of x<sub>2</sub> increased to 12?  LINDO output is given for the following linear programming problem. MIN 12 X1 + 10 X2 + 9 X3 SUBJECT TO END LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1)80.000000  2)  5 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60  3)  8 X 1 + 10 X 2 + 5 X 3 > = 80   \begin{array} { l r c }  \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\ \mathrm { X } 1 & .000000 & 4.000000 \\ \mathrm { X } 2 & 8.000000 & .000000 \\ \mathrm { X } 3 & .000000 & 4.000000 \end{array}  NO.ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED:   \begin{array} { l c c }  \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\ \text { 2) } & 4.000000 & .000000 \\ \text { 3) } & 000000 & - 1.000000 \end{array}       a.What is the solution to the problem? b.Which constraints are binding? c.Interpret the reduced cost for x<sub>1</sub>. d.Interpret the dual price for constraint 2. e.What would happen if the cost of x<sub>1</sub> dropped to 10 and the cost of x<sub>2</sub> increased to 12?
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?


Definitions:

Cheating

The act of being dishonest or not following the rules to gain an advantage or benefit.

Physically Fit

Describes a state of health and well-being achieved through exercise, nutrition, and sufficient rest, enabling the performance of daily activities with vigor.

Highly Physically Attractive

Referring to individuals who are considered to possess physical traits that align closely with societal or cultural standards of beauty.

Lower Status

Lower Status describes a position or ranking that is below others in terms of power, prestige, or importance within a social hierarchy.

Related Questions