Examlex

Solved

A Hospital Needs to Determine How Many Nurses to Hire

question 22

Essay

A hospital needs to determine how many nurses to hire to cover a 24 hour period. The nurses must work 8 consecutive hours but can start work at the start of 6 different shifts. They are paid different wages depending on when they start their shifts. The number of nurses required per 4-hour time period and their wages are shown in the following table.
 Time period  Required # of Nurses  Wage ($/hr)12am4am20154am83016 am 8am12pm401312pm4pm50134pm44014pm8pm12am3015\begin{array}{lcc}\text { Time period } & \text { Required \# of Nurses } & \text { Wage }(\$ / \mathrm{hr}) \\\hline 12 \mathrm{am}-4 \mathrm{am} & 20 & 15 \\4 \mathrm{am}-8 & 30 & 16 \\\text { am } & & \\8 \mathrm{am}-12 \mathrm{pm} & 40 & 13 \\12 \mathrm{pm}-4 \mathrm{pm} & 50 & 13 \\4 \mathrm{pm}-4 & 40 & 14 \\\mathrm{pm}\\8 \mathrm{pm}-12 \mathrm{am}&30 & 15 \end{array}
What are the key formulas for this Excel spreadsheet implementation of the following formulation?
Let Xi=\quad X _ { i } = mumber of nurses warking in thme period i;i=1,6i ; i = 1,6
 MiN: 1X1+1X2+1X3+1X4+1X5+1X6 Subject ta: 1X1+1Xz301X2+1X3401X3+1X4501X4+1X5401X5+1X1301X1+1X120Xi0\begin{array} { l l } \text { MiN: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } + 1 \mathbf { X } _ { \mathbf { 6 } } \\\text { Subject ta: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { z } } \geq 30 \\& 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } \geq 40 \\& 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } \geq 50 \\& 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } \geq 40 \\& 1 \mathbf { X } _ { 5 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 30 \\& 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 20 \\& \mathbf { X } _ { \mathrm { i } } \geq 0\end{array}  A hospital needs to determine how many nurses to hire to cover a 24 hour period. The nurses must work 8 consecutive hours but can start work at the start of 6 different shifts. They are paid different wages depending on when they start their shifts. The number of nurses required per 4-hour time period and their wages are shown in the following table.   \begin{array}{lcc} \text { Time period } & \text { Required \# of Nurses } & \text { Wage }(\$ / \mathrm{hr}) \\ \hline 12 \mathrm{am}-4 \mathrm{am} & 20 & 15 \\ 4 \mathrm{am}-8 & 30 & 16 \\ \text { am } & & \\ 8 \mathrm{am}-12 \mathrm{pm} & 40 & 13 \\ 12 \mathrm{pm}-4 \mathrm{pm} & 50 & 13 \\ 4 \mathrm{pm}-4 & 40 & 14 \\ \mathrm{pm}\\ 8 \mathrm{pm}-12 \mathrm{am}&30 & 15   \end{array}   What are the key formulas for this Excel spreadsheet implementation of the following formulation?  Let  \quad X _ { i } =  mumber of nurses warking in thme period  i ; i = 1,6   \begin{array} { l l }  \text { MiN: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } + 1 \mathbf { X } _ { \mathbf { 6 } } \\ \text { Subject ta: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { z } } \geq 30 \\ & 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } \geq 40 \\ & 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } \geq 50 \\ & 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } \geq 40 \\ & 1 \mathbf { X } _ { 5 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 30 \\ & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 20 \\ & \mathbf { X } _ { \mathrm { i } } \geq 0 \end{array}


Definitions:

Probability

The likelihood or chance of an event occurring.

Sample Size

The number of observations or data points that are selected from a population for the purposes of statistical analysis.

Sample Size

The number of observations or data points collected in a sample for the purpose of analysis.

Population Standard Deviation

A measure of the variation or dispersion of all values in an entire population.

Related Questions