Examlex

Solved

SCENARIO 17-2 One of the Most Common Questions of Prospective (Y)( Y )

question 45

Multiple Choice

SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y) ( Y ) . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X1) \left( X _ { 1 } \right) , the amount of insulation in inches (X2) \left( X _ { 2 } \right) , the number of windows in the house (X3) \left( X _ { 3 } \right) , and the age of the furnace in years (X4) \left( X _ { 4 } \right) . Given below are the EXCEL outputs of two regression models.

Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\text { Adjusted R Square } & 0.7568 \\\text { Observations } & 20 \\\hline\end{array}  ANOVA \text { ANOVA }
df SS MSF Significance F Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{lrrrrrr}\hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\\hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } && 15 & 40262.3259 & 2684.155 & & \\\text { Total } && 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intereept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature)  4.50980.81295.54760.00005.93493.0847X2 (Insulation)  14.90295.05082.95050.009923.75736.0485X3 (Windows)  0.21514.86750.04420.96538.31818.7484X4 (Furnace Age)  6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}

 Model 2\text { Model } 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\text { Adjusted R Square } & 0.7506 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
 SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars  ( Y )  . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit  \left( X _ { 1 } \right)  , the amount of insulation in inches  \left( X _ { 2 } \right)  , the number of windows in the house  \left( X _ { 3 } \right)  , and the age of the furnace in years  \left( X _ { 4 } \right)  . Given below are the EXCEL outputs of two regression models.  Model 1  \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { R Square } & 0.8080 \\ \text { Adjusted R Square } & 0.7568 \\ \text { Observations } & 20 \\ \hline \end{array}   \text { ANOVA }   \begin{array}{lrrrrrr} \hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\ \hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\ \text { Residual } && 15 & 40262.3259 & 2684.155 & & \\ \text { Total } && 19 & 209765.75 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\ \hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\ \mathrm{X}_{1} \text { (Temperature)  } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\ \mathrm{X}_{3} \text { (Windows)  } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\ \mathrm{X}_{4} \text { (Furnace Age)  } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702 \end{array}    \text { Model } 2    \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { R Square } & 0.7768 \\ \text { Adjusted R Square } & 0.7506 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrllrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\ \mathrm{X}_{1} \text { (Temperature)  } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099 \end{array}  -Referring to Scenario 17-2, what are the degrees of freedom of the partial F test for  H _ { 0 } : \beta _ { 3 } = \beta _ { 4 } = 0 \quad \text { vs. } H _ { 1 } : \text { At least one } \beta _ { \mathrm { j } } \neq 0 , j = 3,4  ? A)  2 numerator degrees of freedom and 15 denominator degrees of freedom B)  15 numerator degrees of freedom and 2 denominator degrees of freedom C)  2 numerator degrees of freedom and 17 denominator degrees of freedom D)  17 numerator degrees of freedom and 2 denominator degrees of freedom

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature)  5.11030.69517.35150.00006.57693.6437X2 (Insulation)  14.71954.88643.01230.007825.02904.4099\begin{array}{lrrllrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm{X}_{1} \text { (Temperature) } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\\mathrm{X}_{2} \text { (Insulation) } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099\end{array}
-Referring to Scenario 17-2, what are the degrees of freedom of the partial F test for H0:β3=β4=0 vs. H1: At least one βj0,j=3,4H _ { 0 } : \beta _ { 3 } = \beta _ { 4 } = 0 \quad \text { vs. } H _ { 1 } : \text { At least one } \beta _ { \mathrm { j } } \neq 0 , j = 3,4 ?


Definitions:

Activity Rates

Rates used in activity-based costing to assign costs to products or services based on the amount of an activity they consume.

Activity-Based Costing

A method of costing that identifies individual activities as the fundamental cost objects and uses the costs of these activities to compute the costs of various products or services.

Direct Labor-Hours

The total hours worked by employees directly involved in the production process, often used as a basis for allocating overhead costs.

Product J3

Product J3 could refer to a specific model or item within a company's lineup, identified by the code "J3."

Related Questions